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Jean-Marc Jézéquel Irisa (INRIA
University of Rennes)
Andreas Korff Atego Systems GmbH
Vinay Kulkarni Tata Consultancy Services
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ABSTRACT
The Common Variability Language (CVL) provides a well-
structured mechanism to express variability and to relate
this variability to any MOF-compliant model. This charac-
teristic allows users to define the materialization of a given
CVL resolution/configuration. Using variation points, it is
possible to express and manipulate the links between the
variability abstraction model and the base model. However,
the meaning of a given variation point can vary according
to the semantics of each domain. For example, a variation
point that excludes an element in the base model can lead
to further operations, like excluding other elements which
were associated to the deleted element, or even to reassign
references to another model element. Therefore, it is nec-
essary to address this semantic variability in order to align
the materialization semantics to the base model semantics.
In this paper, we show how Kermeta can be used to easily
implement and customize the semantics of the CVL’s vari-
ation points, according to the semantics of the base model
domain.

General Terms
Variability Modelling, CVL, Semantics, Extensibility

1. INTRODUCTION
Variation points are a common structure in software and
systems families. These points can indicate choices among
different algorithms or different data structures. In the con-
text of Software Product Lines (SPL), the most common way
to express these variation points is in a feature model. The
first feature model was proposed by Kang and others [10],
in 1990, as part of the method Feature-Oriented Domain
Analysis (FODA). Since then, several other feature-oriented
approaches for variability modeling were proposed based on
FODA [4, 5, 6, 9, 13, 11, 12, 17, 19]. These variability mod-

eling approaches are evolving towards supporting a great
part of the product line lifecycle, and not only the domain
modeling of a product family. As an effort to standardize
and promote variability modeling, The Common Variabil-
ity Language (CVL)1 provides a well-structured mechanism
to express variability and to relate this variability to any
model that conforms to the Meta-Object Facility (MOF)2.
The links to model-based assets can facilitate the derivation
process, since that the choices in the variability level can be
explicitly mapped to a realization layer and furthermore re-
flected in the assets level by means of executing a derivation
algorithm. In this way, the CVL realization model works
as an intermediate layer between the variability abstraction
layer (can be seen as the features level) and the assets layer
i.e., the set of model-based elements. Using variation points,
this layer defines the set of modifications that must be exe-
cuted over the set of base-model assets, according to selected
features in the variability abstraction layer. These modifi-
cations have their defined semantics, for example, the Ob-
jectExistence variation point defines the presence or absence
of a given element in the materialized product model.

The ObjectExistence will exclude the binding model element
if the related feature is not selected. However, this semantics
can vary according to the semantics of the base-model do-
main. For example, excluding a class of a class diagram may
not influence in the existence of the classes related to it, on
the other hand, excluding an activity of an activity diagram
may break an activity flow. This semantics variation can
be identified even in the same base model, e.g., excluding
a class attribute has different semantics then excluding an
entire package, in the last situation it may lead to exclude
all the classes contained in the package, whereas excluding
an attribute may not lead to any further exclusions of model
elements.

Given this variety of semantics that can be assigned to the
same variation point, it is necessary to provide flexibility
and adaptability for the materialization engines. Therefore,
in this paper, we present how we can easily implement and
customize the semantics of the variation points using Ker-
meta, a Model-Driven Engineering platform that leverages

1http://www.omgwiki.org/variability
2http://www.omg.org/mof/
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the construction of aspects to handle static and dynamic
semantics concerns around a metamodel.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a background about CVL and Kermeta. Sec-
tion 3 shows motivating examples of how materialization se-
mantics can vary for a given CVL variation point. Section 4
presents how to implement an operational semantics of a
variation point and, after, three mechanisms to customize
and to implement multiple operational semantics. Section 5
discusses related work and Section 6 presents the conclu-
sions.

2. BACKGROUND
2.1 The Common Variability Language
CVL is a domain-independent language for specifying and
resolving variability over any instance of any MOF-compliant
metamodel. Also inspired by FODA, CVL has a Variabil-
ity Abstraction Model (VAM ), which is the part of CVL in
charge of expressing the variability in terms of a tree-based
structure. The core concepts of the VAM are the variability
specifications (VSpecs). The VSpecs are nodes of the VAM
and can be divided into three kinds: Choices, Variables and
Classifiers. Each kind of VSpec has its own type of resolution
(VSpecResolutions). The Choices are VSpecs that can be
resolved to yes or no (through ChoiceResolution), Variables
are VSpecs that require a value for being resolved (Variable-
Value) and Classifiers are VSpecs that imply the creation of
instances and then providing per-instance resolutions (VIn-
stances). In this paper, we mainly use the Choices VSpecs,
which can be intuitively compared to features, in feature
models, and can be decided positively or negatively during
the product derivation.

Besides the VAM, CVL also contains a Variability Realiza-
tion Model (VRM). This model makes possible to specify
the changes in the base model implied by the VSpec reso-
lutions. These changes are expressed as Variation Points in
the VRM. Variation Points can mainly express three differ-
ent types of semantics, which are following described.

• Existence. This type of variation point expresses
whether an object (ObjectExistence variation point) or
a link (LinkExistence variation point) exists or not in
the materialized model.

• Substitution. This type of variation point expresses
a substitution of a model object by another (Object-
Substitution variation point) or of a fragment of the
model by another (FragmentSubstitution)

• Value Assignment. This type of variation point ex-
presses that a given value is assigned to a given slot in
a base model element (SlotAssignment variation point)
or a given link is assigned to an object (LinkAssign-
ment variation point).

In this paper, we claim that it is necessary to customize
or specialize the semantics of these variation points and we
propose an approach that supports this customization by
using different mechanisms. In Figure 1, we present a CVL
overview. As illustrated, each variation point can be bound
to a VSpec, which is referred by a VSpecResolution. De-
pending on the value of the resolution, the corresponding

Semantic 1 
Semantic 2 Customized Semantics 

Base Model 

yes!
yes!

no!
VSpecResolutions VSpecs 

Variation Points 

CVL Model 

Figure 1: CVL overview with semantics customiza-
tion.

variation point is executed during the materialization, mod-
ifying the corresponding model element. Thus, Figure 1
shows the point where this modification can be customized,
making possible to have different semantics for a same vari-
ation point.

2.2 Kermeta
Our definition of the CVL semantics and its extension mech-
anisms are built on top of Kermeta [15]. Kermeta is a lan-
guage workbench designed for specifying and designing do-
main-specific languages (DSL). For this, it involves different
languages, depending on the concern: abstract syntax (we
will also use the term “metamodel” to refer to it3), static se-
mantics and behavioural/operational semantics. The work-
bench integrates the OMG de facto standards EMOF and
OCL, respectively for specifying the abstract syntax and the
static semantics. The workbench also provides the Kermeta
Language to address the specification of the operational se-
mantics and to integrate an action language in EMOF. The
Kermeta Workbench also provides composition operators
responsible for composing these different concerns into a
standalone execution engine (interpreter or compiler) of the
DSL.

The Kermeta language is imperative, statically typed, and
includes classical control structures such as blocks, condi-
tionals, loops and exceptions. The Kermeta language also
implements traditional object-oriented mechanisms for han-
dling multiple inheritance and generics. The Kermeta lan-
guage provides an execution semantics to all EMOF con-
structs that must have a semantics at runtime, such as con-
tainment and associations. First, if a reference is part of a

3This is one definition in the community. For some re-
searchers, “metamodel” is sometimes referred to abstract
syntax plus static semantics.



bidirectional association, then the assignment operator se-
mantics handles both ends of the association at the same
time. Second, if a reference is part of a containment as-
sociation, then the assignment operator semantics unbinds
existing references, so that an object is part of another. Fi-
nally, for multiple inheritance, Kermeta borrows the seman-
tics from the Eiffel programming language [14].

In Kermeta, all pieces of static and behavioral semantics
are encapsulated in metamodel classes. An aspect key-
word enables DSL engineers to relate the language concerns
(abstract syntax, static semantics, behavioral semantics) to-
gether. It allows DSL engineers to reopen a previously cre-
ated class to add some new pieces of information such as
new methods, new properties or new constraints. It is in-
spired from open-classes [2]. The keyword require enables
the composition itself. A DSL implementation requires an
abstract syntax, a static semantics and a behavioral seman-
tics. The require mechanism also provide some flexibility
with respect to static and behavioral semantics. For exam-
ple, several behavioral semantics could be defined in differ-
ent modules (all on top on the same metamodel) and then
chosen depending on particular needs (e.g., simulation, com-
pilation). It is also convenient to support semantics varia-
tions of the same language. For instance, Kermeta proposes
a built-in mechanism to specify several implementations of
CVL semantics variation points as shown in Section 4.2.

3. SEMANTICS VARIATION SCENARIOS
In this section, we justify, motivate and illustrate the need
for customizing the CVL materialization semantics. Our
goal is to show scenarios in which the semantics of the vari-
ation point ObjectExistence can vary according to the base
model semantics. The primary semantics of this variation
point is to determine whether a model element exists or not
in the materialized model. Considering a negative deriva-
tion, this is done by checking the VSpecResolution of the
binding VSpec, if it is set to yes, nothing is done, if it is set
to no, the referred model element is excluded. However, we
have to consider that excluding a model element may lead
to secondary operations to complement the primary seman-
tics of the variation point. This semantics complements, or
secondary operations, may vary according to different sce-
narios.

The first scenario to be considered is that this materializa-
tion semantics can vary within the same metamodel. In Fig-
ure 2 (a), we have a base model that conforms to the UML
Class Diagram metamodel. This model has three classes:
Garage, Car and Sedan. The class Sedan is a subclass of
the class Car, which represents a car that can be parked in a
garage. Therefore, the class Garage represents a place that
can accommodate cars. To exemplify the semantics varia-
tion of excluding a model element, we remove each class of
this model and observe the possible outcome for each class.

Although we exclude the same type of element (Class) in this
example, we can see that the semantics of the exclusion oper-
ation leads to different possible secondary operations in the
model. A possible result from excluding the class Garage is
shown in Figure 2(b), which is to exclude the class Garage
and all its relationships. This outcome is reasonable, consid-
ering that the other classes are not depending on the class
Garage to exist. This same scenario can be observed in Fig-
ure 2(c). After removing the class Sedan , the inheritance

(a) Original Model! (b) Remove Garage!

(c) Remove Sedan! (d) Remove Car!

Figure 2: Different semantics for removing a class.

relationship is removed and the other classes remain in the
model. On the other hand, as illustrated in Figure 2(d), re-
moving the class Car leads to exclude not only itself and its
relationships, but also removing its subclasses, in this case,
the class Sedan.

The semantics of excluding an element can vary for the same
type of model elements, but can also vary for different types.
Excluding a package of a class diagram can imply on remov-
ing all its classes. However, excluding a class attribute may
not lead to any further operations.

Another scenario to consider is related to the other kinds of
base models, such as the activity diagram of the UML, in
which we can observe that the materialization semantics can
vary even more. In Figure 3, excluding the Fasten Seat Belt
activity can imply on four operations: remove Fasten Seat
Belt model element, remove the income link, remove the
outcome link and create a new link from the Get in activity
to the Start Engine activity. This is also discussed in [3].

(a) Original Model!

(b) Remove Fasten Seatbelt!

Figure 3: Removing an activity.

In fact, one can argue that this semantics variation can be
expressed with the CVL standard semantics. However, we
believe that such customization is important to leverage ab-
straction over the base model semantics, encapsulating sec-
ondary operations. Therefore, the engineer in charge of de-
signing a CVL realization model can, for example, abstract
over tedious operations, such as removing dangling refer-
ences or excluding contained elements.

4. USING KERMETA TO CUSTOMIZE THE
MATERIALIZATION

3



4.1 Weaving Semantics into CVL
Before showing how different semantics can be weaved into
a variation point, we introduce standard pattern used in
Kermeta to weave meta-model operational semantics. Us-
ing Kermeta, we are able to directly weave operational se-
mantics into any EMF metamodel. Consequently, the CVL
metamodel is required as an input and can be easily invoked
in Kermeta using the require keyword, (e.g., require CVL-

Metamodel.ecore). It is possible to weave the operational
semantics into any model element in the metamodel. The
Listing 1 shows how we can simply attach operational se-
mantics into the CVL abstract syntax (metamodel). The
code that implements the operational semantics of a model
element is placed in an aspect class block, named accord-
ing to the model element name (line 1). In the case of the
variation points, we define an abstract operation to evalu-
ate the operational semantics of the variation point (line 2).
This operation is abstract because the actual implementa-
tion is in the concrete class that inherits from the Variation
Point class.

Listing 1: Eval method introduction in all the VPs
1 aspect class Var iat ionPoint {
2 operation eva l ( ctx : CVLExecutionContext : :

CVLExecutionContext ) :Void i s abstract
3 }

Each concrete variation point has an eval method, which
overrides the abstract operation and must contain the op-
erational semantics to be executed, following an implemen-
tation of the Interpreter Design pattern [8]. An execution
context (CV LExecutionContext) is provided as a parame-
ter of the eval method. This context stores relevant informa-
tion to the execution of the materialization engine, such as
the set of selected/unselected V Specs and the set of model
elements in the resolved model.

The Listing 2 presents the operational semantics of the Ob-
jectExistence variation point. Firstly, in line 3, it is verified
whether the binding V Spec of the current variation point
is selected or not. If the V Spec is not selected for the cur-
rent materialization, we need to remove the corresponding
element in the base model. In line 4, we navigate to the
binding object of the current variation point (self) to pro-
vide the optional element in the base model that is inside
the collection ctx.domainResource to the method remove.

Listing 2: Excerpt of the ObjectExistence semantics
1 aspect class ObjectExistence {
2 method eva l ( ctx : CVLExecutionContext : :

CVLExecutionContext ) : Void i s do
3 i f (not ctx . d e c i s i o n ) then
4 ctx . toRemove . add ( s e l f . opt iona lObjec t . ob j e c t )
5 end
6 end
7 }

4.2 Customizing the semantics for your domain
metamodel

CVL proposes a set of VP with a well-defined semantics
and keeps one as an extension point to implement its own
semantics: Opaque Variation Point (OVP). The OVP is a
black box that can define an arbitrary behaviour to execute
during derivation. The use of OVPs can be seen as a mech-
anism to propose a particular semantic for the derivation

engine. Besides the OVP, following we propose two other
mechanisms to customize the semantics of CVL. The first
one is the static introduction of a new semantic and the sec-
ond one is using the strategy pattern. Finally, we explain
how to introduce a home-made semantic using OVPs.

Static introduction of a new semantics
By using the built-in require composition mechanism of Ker-
meta, it is possible to statically customize the semantics of a
CVL variation point. Indeed, require provides a linearisation
mechanism to weave aspect in an existing metamodel. It
allows a DSL engineer to reopen a previously created meta-
class to add new pieces of information such as new meth-
ods, new properties or new constraints. It is inspired from
open-classes [2]. It also allows engineers to easily replace the
behaviour of an existing method. Indeed, the method (eval,
see Listing 1), which is introduced in all the variation points
(ObjectSubstitution, ObjectExistence, . . . ) can be changed
by requiring a new Kermeta file. This modification is static,
modifying the types and requiring to recompile all the CVL’s
Kermeta implementation.

This extension mechanism has two main drawbacks. First,
Kermeta does not allow the new implementation to call the
previous aspect implementation, contrarily as we can call
the code of an operation contained in the super-class with
the keyword super. Secondly, using this mechanism, the
DSL engineer can change (and potentially break) completely
the CVL implementation. Kermeta does not provide any
checker to ensure that a new implementation is a refine-
ment of the previous implementation. The main advantages
is the fact that the extension is modular and can be stati-
cally plugged or unplugged. As an example, we present in
Listing 3, an excerpt of a customization of the CVL Object
Existence, which, besides removing the model element (line
4), also fixes dangling references (line 5).

Listing 3: Excerpt of the ObjectExistence semantics
1 aspect class ObjectExistence {
2 method eva l ( ctx : CVLExecutionContext : :

CVLExecutionContext ) : Void i s do
3 i f (not ctx . d e c i s i o n ) then
4 ctx . toRemove . add ( s e l f . opt iona lObjec t . ob j e c t )
5 f i x R e f e r e n c e s ( s e l f . opt iona lObjec t . object , ctx

)
6 end
7 end
8 }

Strategy pattern
The basic semantics used in the default CVL implementa-
tion is the following. Each variation point can modify the
model to change relationships between model elements and
can introduce new model elements. To remove a model ele-
ment, each variation point acts on a context that contains a
list toRemove of the model elements that must be removed.
Removing elements of a base model is performed at the end
of the derivation to avoid side-effects among variation points.
With this behaviour, CVL combines positive variability and
negative variability. The default semantics for this remove
implementation is the following. Each element contained
(containment relationship) by an element that must be re-
moved is also removed. All the references of an element
that must be removed are set to null. All the elements,
that reference an object that must be removed through a

4



reference with a violation of the lower cardinality are also
removed, e.g. if a : A references b : B and A is associated
exactly with one B, if b is removed, a is also removed. This
can already be seen as a semantic customization as it has
an additional load of operations that must be performed for
a given variation point. Consequently, we introduce in the
default semantics a strategy pattern [8] to provide the abil-
ity of dynamically specializing the default semantics. The
idea is that a domain expert can define a new CVL semantic
extension and can register it. During the derivation, when
a model element has to be removed, all the registered ex-
tensions are called to determine the list of model elements
to be removed (as depicted in Figure 4). To implement a
new metamodel extension, the DSL expert has to create an
object that respects the following interface (see Listing 4).

Listing 4: Excerpt of the ObjectExistence semantics
1 interface ToRemoveStrategy {
2 method remove ( objToRemove : Object , ctx :

CVLExecutionContext ) : Void i s abstract
3 }

Listing 5: Excerpt of the ObjectExistence semantics
1 aspect class ObjectExistence {
2 method eva l ( ctx : CVLExecutionContext : :

CVLExecutionContext ) : Void i s do
3 i f (not ctx . d e c i s i o n ) then
4 ctx . remove ( s e l f . opt iona lObjec t . ob j e c t )
5 end
6 end
7 class CVLExecutionContext {
8 method remove ( obj : Object ) : Void i s do
9 s e l f . toremove . add ( obj )

10 // Cal l the s t r a t e g i e s
11 s e l f . t o r emoveSt ra teg i e s . each{ s t r a t | s t r a t .

remove ( obj , s e l f )}
12 end
13 . . .
14 }

Figure 4: Strategies Sequence Diagram

This extension mechanism provides several benefits. Firstly,
it ensures that the default semantics of the CVL variation
point is respected. Indeed, domain engineers can only re-
fine the semantics in removing elements, and not directly in
the variation point. It can be compared to the idea of post
directives in Kompose [7]. Secondly, new strategies can be
registered or unregistered dynamically. Finally, each spe-
cialization can be modularized in a distinct building block.

Home-made semantics using Opaque Variation Point
The last way to customize the CVL derivation semantics is
the use of Opaque Variation Points (OVP). An OVP is the
Variation Point in which the behavior is defined by using

an expression defined in an action language. We currently
propose an implementation that supports OVP definition
in Groovy 4, in Javascript or in Kermeta. With these ac-
tion languages, designers can modify the base model directly.
Each of this Variation point can access to a context that con-
tains the list of Objects to remove (toRemove), the list of
objectHandles associated to this Variation Point (ctx), the
list of variable and their associated value defined in the the
resolution model (args), and a map of key value that can be
used to propagate value between the execution of variation
points map (see Figure 5). An example of OVP is defined in
Listing 6 as an expression attribute of the OVP, it adds all
the UML properties that references a base model element
that must be removed.

Listing 6: OVP example in Groovy
1 ctx . each {e −>
2 org . e c l i p s e . uml2 . uml . PackageableElement elem =

e ;
3 org . e c l i p s e . uml2 . uml . Package p1 =elem .

getPckage ( ) ;
4 p1 . getMembers ( ) . f i n d A l l {m −>
5 m instanceof org . e c l i p s e . uml2 . uml . As soc i a t i on

}
6 . each{m−>
7 m. g e tPrope r t i e s ( ) . entrySet ( ) . f i n d A l l { p2 −>
8 p2 . getType ( ) . equa l s ( e ) } . each{ m2 −>
9 notSe l e c t ed . add (m)

10 }
11 }
12 }

The main drawback of this extension mechanism is the own
opacity of the OVP. No CVL checker can ensure the cor-
rectness of the variability model and it becomes complex to
understand the expected behaviour of a variability realiza-
tion model.

Synthesis
Table 1 shows a comparison of the three extension mecha-
nisms provided in our CVL implementation to support the
customization of the CVL semantics for a domain model. We
can observe that the second mechanism is generally the best
to specialize the CVL semantics for a specific metamodel.
Indeed, it does not change the CVL semantics but it only
refines the semantics of removing an element in the case of
your domain model. Opaque Variation Point is often useful
even if we loose the ability to understand the materialization
in analizing the CVL model. Besides, it is currently missing
in CVL the notion of Opaque Variation Type to ease the
reuse of an existing OVP. It probably could also be done
using CVL configurable units. The first mechanism is built-
in within Kermeta but seems to be dangerous for the case
of CVL because experts should be perfectly aware of the
previous implementation to change it without introducing
side-effects.

4http://groovy.codehaus.org/

Figure 5: OVP context execution
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Benefits Drawbacks
Static introduction of new semantics Modular No guarantee, highly invasive

New strategy definition Modular, Dynamic Can only change the negative derivation semantics
Opaque Variation Points Flexible Black Box, uncheckable, no reuse

Table 1: Synthesis of the three extension mechanisms

5. RELATED WORK
Cetina et al [1] presents three strategies for materializing
variability. The authors use CVL for modeling runtime vari-
ability and they claim that the materialization must be ad-
equated to some extra-functional properties, such as per-
formance, history and persistence of base model changes.
Therefore, the authors develop different strategies for mate-
rializing the CVL model. However, these strategies are not
in the level of semantics of our work, in fact, these strate-
gies share a single semantics and produce a same material-
ized base model, the only change is in the extra-functional
properties.

Perrouin et al [16] proposes an approach for product deriva-
tion that provides both automation and flexibility. Instead
of using CVL, the authors use the abstract syntax of the
Free Feature Diagram (FFD) [19]. To link features to base
model elements, the authors extended the FFD with a sim-
ple association between a Feature and a Model, limiting the
expressiveness of the product derivation. The flexibility of
the approach is provided by Kompose [7], which leverages a
degree of customization similar to ours.

Schaefer et al [18] uses delta-oriented programming for im-
plementing SPL. In their work, similarly to CVL, an in-
termediate layer between the features and the artifacts is
created. This layer defines delta-modules, which specifies
changes in the core model, like variation points in CVL.
A key difference from our approach is the model integra-
tion provided by the Kermeta workbench, which is not com-
pletely addressed in Schaefer‘s work.

6. CONCLUSION AND FUTURE WORK
Variation points in CVL are elements that express a modi-
fication in the target base model. These elements are linked
to a variability specification that triggers the modification,
depending on their resolution value. The main goal of this
paper is to motivate the fact that these modifications can
have different semantics, depending on the base model se-
mantics. Thus, we have shown how this semantic can be
customized using Kermeta, comparing three different ways
of implementing this customization. As future work, we are
working on a full customization of CVL for UML and for the
Thales 5 Domain Specific Language for Software and System
design. We are also working on the use of high level DSLs
to express new strategies and define properties that can be
checked to ensure the correctness of the customization.

7. REFERENCES
[1] C. Cetina, O. Haugen, X. Zhang, F. Fleurey, and V. Pelechano.

Strategies for variability transformation at run-time. In
Proceedings of the 13th International Software Product Line
Conference, SPLC ’09, pages 61–70, Pittsburgh, PA, USA,
2009. Carnegie Mellon University.

[2] C. Clifton and G. T. Leavens. Multijava: Modular open classes
and symmetric multiple dispatch for java. In OOPSLA, pages
130–145, 2000.

5http://www.thalesgroup.com/

[3] K. Czarnecki and M. Antkiewicz. Mapping features to models:
A template approach based on superimposed variants. In
R. Gl§ck and M. Lowry, editors, Generative Programming and
Component Engineering, volume 3676 of Lecture Notes in
Computer Science, pages 422–437. Springer Berlin /
Heidelberg, 2005. 10.1007/11561347:28.

[4] K. Czarnecki, T. Bednasch, P. Unger, and U. W. Eisenecker.
Generative programming for embedded software: An industrial
experience report. In Proceedings of the 1st ACM
SIGPLAN/SIGSOFT conference on Generative Programming
and Component Engineering, GPCE ’02, pages 156–172,
London, UK, 2002. Springer-Verlag.

[5] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged
configuration using feature models. In R. L. Nord, editor,
SPLC, volume 3154 of Lecture Notes in Computer Science,
pages 266–283. Springer, 2004.

[6] D. Fey, R. Fajta, and A. Boros. Feature modeling: A
meta-model to enhance usability and usefulness. In Proceedings
of the Second International Conference on Software Product
Lines, SPLC 2, pages 198–216, London, UK, UK, 2002.
Springer-Verlag.

[7] F. Fleurey, B. Baudry, R. France, and S. Ghosh. A generic
approach for automatic model composition. In H. Giese, editor,
Models in Software Engineering, volume 5002 of Lecture Notes
in Computer Science, pages 7–15. Springer Berlin /
Heidelberg, 2008. 10.1007/978-3-540-69073-3 2.

[8] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1994.

[9] M. L. Griss, J. Favaro, and M. d. Alessandro. Integrating
feature modeling with the rseb. In Proceedings of the 5th
International Conference on Software Reuse, ICSR ’98, pages
76–, Washington, DC, USA, 1998. IEEE Computer Society.

[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-oriented domain analysis (foda) feasibility
study. Technical report, Carnegie-Mellon University Software
Engineering Institute, November 1990.

[11] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.
Form: A feature-oriented reuse method with domain-specific
reference architectures. Ann. Softw. Eng., 5:143–168, January
1998.

[12] K. C. Kang, J. Lee, and P. Donohoe. Feature-oriented product
line engineering. IEEE Software, 19(4):58–65, 2002.
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ABSTRACT
This paper proposes a software design modelling approach
that uses the Common Variability Language (CVL) to spec-
ify and resolve the variability of a software design, and the
aspect-oriented modelling technique Reusable Aspect Mod-
els (RAM) to specify and then compose the detailed struc-
tural and behavioural design models corresponding to the
chosen variants. This makes it possible to 1) exploit the
advanced modularization capabilities of RAM to specify a
complex, detailed design concern and its variants by means
of a set of interdependent aspect models; 2) use CVL to
provide an easy-to-use product-line interface for the design
concern; 3) automatically generate a detailed design model
for a chosen variant using a custom generic CVL derivation
operator and the RAM weaver.

1. INTRODUCTION
A well-established and convenient practice in variability

management is to provide a specification of the variability
in terms of features separately from the associated artifacts
that provide an implementations of the actual reusable as-
sets. While some de-facto standards such as feature dia-
grams [9] are widely used to represent commonality (i.e.,
common properties) and variability (i.e., differences) of a
system in terms of features, they still have to rely on spe-
cific operators to modularly implement and then compose
the reusable aspects.

In this paper, we propose an approach combining the
Common Variability Language (CVL) [4] to specify and re-
solve the variability of a software design, and the aspect-
oriented modelling technique Reusable Aspect Models (RAM) [10]
to implement and compose reusable object-oriented software
design aspects. We use RAM to describe and compose the
assets, while the feature model and its resolution (which are
currently not explicit in RAM) are made explicit using CVL.

The contribution of this paper is therefore twofold: On
the one hand we show how CVL can be used to extend an
existing approach for AOM with well-established practices
coming from the variability management community. On

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

the other hand we illustrate the use of CVL with specific
modularity and composition operators tailored to work with
an aspect-oriented modelling technique. The derivation op-
erator of CVL is specialized to work with RAM, resulting in
an implementation of a generic opaque variation point that
can produce the composition directives allowing the RAM
weaver to produce a woven model corresponding to the cho-
sen configuration.

The remainder of the paper is structured as follows: sec-
tion 2 presents an overview of the proposed approach; sec-
tion 3 illustrates the details of the approach by means of
a software design concern product line for workflow execu-
tions; section 4 presents related work and the last section
draws some conclusions.

2. APPROACH OVERVIEW:
COMBINING CVL AND RAM

The approach we propose is based on RAM and CVL.
Reusable Aspect Models (RAM) [10] is a modelling

approach that allows a designer to specify models that de-
fine the structure and behaviour of recurring design solu-
tions. RAM models are inherently reusable, which means
that it is possible to customize the generic design solution
models to application-specific needs when applying them in
a software design of a specific application. Currently, the
RAM tool comes with a growing library of reusable design
models, including models for low-level utility concerns, de-
sign patterns, network communication, workflow definition
and execution, and transactions.

In general, there is no one single good way to solve a spe-
cific design problem. This is why RAM supports the def-
inition of families of interrelated design models – in RAM
terminology called concerns – that describe different varia-
tions of how to address a design problem. Typically, at the
core of such a design concern is at least one aspect model
that encapsulates the structure and behaviour common to
all variations. Additional structure and behavioural prop-
erties covering variations of the design are modelled within
extensions to that core model.

The Common Variability Language (CVL)1 [4] is a
domain-independent language for specifying and resolving
variability over any instance of any MOF-compliant meta-
model. Inspired by feature model, CVL contains several
layer. The Variability Abstraction Model (VAM ) is in charge
of expressing the variability in terms of a tree-based struc-
ture. The core concepts of the VAM are the variability

1CVL is currently a proposal submitted to OMG. Cf. http:
//variabilitymodeling.org.
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specifications (VSpecs). The VSpecs are nodes of the VAM
and can be divided into three kinds: Choices, Variables and
Classifiers. The Choices are VSpecs that can be resolved to
yes or no (through ChoiceResolution), Variables are VSpecs
that requires a value for being resolved(VariableValue) and
Classifiers are VSpecs that imply the creation of instances
and then providing per-instance resolutions (VInstances).
In this paper, we mainly use the Choices VSpecs, which can
be intuitively compared to features, which can or cannot
be selected during the product derivation (yes/no decision).
Besides the VAM, CVL also contains a Variability Realiza-
tion Model (VRM). This model provide a binding between
the base model and the VAM. It makes possible to specify
the changes in the base model implied by the VSpec reso-
lutions. These changes are expressed as Variation Points in
the VRM. The Variation Points capture the derivation se-
mantics, i.e. the actions to perform during the Derivation.
Finally, CVL model contains resolution models to fix the
variability capture in the VAM.

In this paper, we propose an approach combining CVL to
specify and resolve the variability, and RAM to implement
and compose reusable object-oriented software aspects. We
use RAM to describe and compose the assets while the fea-
ture model and its resolution (which are currently not ex-
plicit in RAM) are made explicit using CVL.

The global approach is a two-level process: first the reusable
aspects are capitalized and their possible combinations are
captured in a variability model. Second, the variability
model is used to select an expected set of features (aka
configuration) from which a woven model is produced by
composition of the suitable reusable aspects.

In practice, as illustrated in Figure 1, the approach is
divided into the following five steps:

À implementation of the reusable aspects using RAM;

Á specification of the variability (called variability ab-
stract model) using the choice diagram proposed by
CVL;

Â resolution of the variability by selecting a set of fea-
tures (called resolution model) using CVL;

Ã derivation of the composition directives using the generic
CVL derivation operator, with a dedicated opaque vari-
ation point that we propose (and include in the vari-
ability realization model);

Ä composition of the corresponding reusable aspects as
describe in the composition directives with the RAM
weaver.

From a methodological perspective, we also distinguish
two roles for users of our approach:

• Design Concern Expert. The design concern expert
knows the domain captured in the reusable aspects and
knows their possible combination. This person is thus
in charge of leveraging this domain to model one or
several reusable aspects with RAM (step À in Figure
1), and the respective variability with CVL (step Á in
Figure 1).

• Application Engineer. The application engineer cre-
ate models in the application domain. These users,
through their modelling activities, can select the ex-
pected features with CVL (step Â in Figure 1), and

RAM
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RAM Model
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Figure 1: Approach Overview Combining CVL and
RAM

then automatically derive the composition directives
(step Ã in Figure 1) used by RAM to automatically
generate the corresponding woven model (step Ä in
Figure 1).

3. APPROACH DETAILS:
THE WORKFLOW CASE STUDY

A workflow is a set of operations that need to be com-
pleted in a certain order to fulfill a goal or task. For ex-
ample, workflows have been used in software engineering to
describe how a system under development is to interact with
its environment.

At run-time, a system that is supposed to behave accord-
ing to a workflow specification needs to incorporate a work-
flow execution engine in its design. To facilitate this, we
have designed a reusable workflow design concern in RAM
that provides such a functionality. Since workflows can be of
varying sophistication, we designed a product line of work-
flow execution engines, which allows the designer to choose
the most appropriate configuration for his specific applica-
tion.

In this section of the paper we illustrate our process in
detail by means of the workflow design concern case study.
The following subsections correspond to the steps outlined
in section 2.

3.1 Designing Reusable Assets using RAM
This subsection outlines the detailed design of the aspect

models that are part of a RAM design concern. For space
reasons, all presented models are simplified versions of the
real RAM workflow design concern models: only the classes
relevant to the definition of the different kind of nodes found
in a workflow are shown. Structure related to the execution
of the workflow, as well as all the sequence diagrams describ-
ing the behaviour of the design have been omitted. The in-
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aspect WorkFlow depends on ZeroToMany, ...

+ depositToken()
+ addNextNode
  (WorkFlowNode n)

SequenceNode
+ depositToken()
+ addNextNode(WorkFlowNode n)
+ Set<WorkflowNode> chooseNextNodes()

ControlFlowNode

EndNode

WorkFlow+ depositToken()
+ addNextNode(WorkFlowNode n)

WorkFlowNodenext
1

StartNode
+ execute()
CustomizableNode

Instantiations:
ZeroToMany:
(others omitted for space reasons)

|Data → Workflow;
|Associated → WorkflowNode

Figure 2: The Base Workflow Aspect Model

terested reader can download the complete models from our
website 2.

3.1.1 The Core Workflow Aspect Model
Figure 2 shows the WorkFlow aspect which defines the

minimal model elements found in every workflow. It states
that a basic workflow is composed of nodes, which can be
sequence or control flow nodes. A special sequence node is
the StartNode, a special control flow node is the EndNode.
The WorkFlowNode has two abstract methods, depositTo-
ken() and addNextNode(WorkFlowNode n), which are imple-
mented differently by the two subclasses. This allows other
parts of the system to treat workflow nodes in a uniform way.
For example, the work flow execution engine (not shown for
space reasons) can deposit a token into any kind of node in
order to execute it, whether it is a SequenceNode or a Con-

trolFlowNode. The design that encodes that a Workflow is
composed of zero or more WorkflowNodes is implemented by
another reusable aspect model, ZeroToMany. The instanti-
ation directive on the bottom of Figure 2 instantiations that
tell the RAM weaver how to compose ZeroToMany with
Workflow.

With this base workflow aspect, a user can build very
simple, sequential workflows. Application-specific actions
are to be designed by extending |CustomizableNode, a class
that executes the execute method when a token is deposited
before scheduling the next node.

3.1.2 Workflow Extensions
The RAM workflow concern provides additional aspect

models that define more elaborate control flows. For in-
stance, there are control flow nodes that have multiple suc-
cessor nodes, where each outgoing path is named using a
string. Figure 3 shows an aspect called OutPath that ex-
tends the WorkFlow aspect and defines the structure needed
for control flow nodes with more than one named outgoing
path in the class |CFNWithOutPath. A new kind of named
sequence node is introduced, OutpathNode, and a new kind
of control flow node, |CFNWithOutpath. Internally, the Map
aspect is reused to define a hash table that maps strings to
OutpathNode as shown by the instantiation directives at the

2http://www.irisa.fr/triskell/perso_pro/obarais/
pmwiki.php?n=App.VARY2012

  String pathName
OutpathNode

+ OutpathNode
   getOutpath(String outPathname)

|CFNWithOutpath

aspect OutPath extends Workflow depends on Map

ControlFlowNodeSequenceNode

Instantiations:
Map: |Data → |CFNWithOutpath; |Key → |String;

|Value → OutpathNode;

Figure 3: The Outpath Aspect Model

aspect ParallelExecution extends Outpath

+ Set<WorkflowNode> chooseNextNodes()
ParallelExecutionNode

Instantiations:
Outpath: |CFNWithOutpath → ParallelExecutionNode;

Figure 4: The ParallelExecution Aspect Model

bottom of the figure.
The ParallelExecution aspect shown in Figure 4 is an ex-

ample of an aspect that uses the Outpath aspect to define
a control flow node that allows a workflow to continue exe-
cution of several following nodes in parallel. To reuse Out-
path, ParallelExecutionNode is composed with |CFNWith-

OutPath.
The RAM workflow design concern defines many other

workflow extensions, which can unfortunately not be shown
here for space reasons. They are:

• ConditionalExecution, which allows for selective exe-
cution of workflows;

• Synchronization, which allows concurrent workflows to
wait for each other;

• Conditional Synchronization, which allows concurrent
workflows to wait for each other conditionally;

• Timed Synchronizaton which allows concurrent work-
flows to wait for each other until a timer expires;

• Input, which allows workflows to wait for input mes-
sages coming from the network;

• Output, which allows workflows to send output mes-
sages to the network;

• Nesting, which makes hierarchies of workflows possible.

Each extension is designed in one aspect model that ex-
tends the base workflow model, and optionally depends on
other models to provide lower-level functionality. The left
hand side of Figure 5 shows an overview of all the aspect
models of the workflow design concern and their dependen-
cies (shown using black straight arrows). The aforemen-
tioned extensions are above the Workflow aspect, since they
add structure and behaviour to the latter. At the bottom of
the figure, below the Workflow aspect, are all the low-level
design models implementing design patterns (e.g. Single-
ton), recurring data structures (e.g. ZeroToMany, Stack or
Map), or utility aspects (e.g. NetworkCommand).
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Synchronization

TimedSynchronization

ConditionalSynchronization Input

Output

MapNamed

Singleton NetworkCommandStackKeyCounter

ConditionalExecutionParallelExecution

Inpath Outpath
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ZeroToMany
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Conditional
Execution

SaveModel

Parallel
Execution

Timed
Synchronization
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Synchronization
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Conditional
Synchronization

Legend
Aspect Model Dependencies
Mandatory Choice
Optional Choice
Mapping Aspects to Choice

Figure 5: The Workflow Design Concern (RAM Models and Dependencies) and the CVL Variation Model

3.2 Specifying the Variability using CVL
To use a RAM design concern within an application model,

the designer first needs to perform careful tradeoff analysis
that takes into account the functional and non-functional
requirements of the application under development to deter-
mine the desired concern variation. Then the designer needs
to add instantiation directives into the application model
that instantiate the RAM aspect models that correspond to
the desired design concern variation. As a result, the RAM
weaver can then compose the design concern models with
the application model to yield the complete design model.

Unfortunately, this reuse process is quite cumbersome for
the designer. In the current version of RAM, a design con-
cern family does not have a well-defined user interface. The
designer is confronted with a collection of interdependent
aspect models as shown on the left hand side of Figure 5.
Once the designer has determined which features of the de-
sign concern are relevant to her, she must determine which
RAM models contain the design of these features, and then
she must manually instantiate them.

To ease the task of the application developer, we propose
to use the CVL Variation Model (VAM) to present a simple-
to-use, feature-oriented view of a RAM design concern to
the user. It encodes the set of choices and the constraints
between choices. For the workflow example, we obtain the
choice model as depicted on the right hand side of Figure 5.
This choice model is quite simple, it contains a root choice
Workflow with eight optional sub-choices and one manda-
tory choice saveModel.

The mapping between the choice model and the RAM as-
pects, illustrated using red arrows in Figure 5, is designed in
the CVL Variability Realization Model (VRM). The VRM
contains ten Opaque Variation Points (OVP). An OVP is a
black box variation point whose behaviour is defined with
an action language expression specified in the CVL model.
In our CVL implementation, we currently support OVPs
defined in Groovy3, in Javascript or in Kermeta [8]. With
these action languages, the designer can modify the base
model directly. Each variation point has access to a con-
text that contains the list of objects to remove (toRemove),
the list of objectHandles associated with this variation point
(ctx), the list of variables and their associated value defined
in the the resolution model (args), and a map of key/value
pairs that variation points can use to pass data to subse-
quent variation points (map).

3http://groovy.codehaus.org/

Among the ten OVPs, there are only three different types.
The first one is bound to the root choice and contains the
action language expression to create a RAM aspect that de-
fines the composition directives. The second one is bound to
the SaveModel choice and contains the action language ex-
pression to save the final model. The eight remaining OVPs
are bound to RAM aspects and contains the code to create
the composition directive in the root aspect previously cre-
ated. The action language expressions for these three types
of OVPs are shown in Listing 1.

Listing 1: Worflow OVPs in Groovy
1 //Expression for CreateAspectWorkflow OVP
2 Aspect a sp e c t c r e a t e=ca . mcg i l l . c s . s e l . ram .

RamFactory . eINSTANCE. createAspect ( ) ;
3 a spe c t c r e a t e . setName ( args . get ( ”name”) ) ;
4 maps . put ( ” NewAspect ” , a sp e c t c r e a t e ) ;
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 //Expression for the e i gh t OVP assoc ia ted to

RAM apsects
7 Aspect newaspect = maps . get ( ” NewAspect ”) ;
8 I n s t a n t i a t i o n i n s t = ca . mcg i l l . c s . s e l . ram .

RamFactory . eINSTANCE. c r e a t e I n s t a n t i a t i o n ( ) ;
9 i n s t . setType ( ca . mcg i l l . c s . s e l . ram .

Ins tant ia t i onType .EXTENDS) ;
10 i n s t . s e tExterna lAspect ( ctx . get (0 ) ) ;
11 newaspect . g e t I n s t a n t i a t i o n s ( ) . add ( i n s t ) ;
12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 //Expression for SaveModel OVP
14 Aspect aspecttoSave = maps . get ( ” NewAspect ”) ;
15 ResourceSet r e sou r c eSe t = new ResourceSetImpl ( )

;
16 r e sou r c eSe t . getResourceFactoryReg i s t ry ( ) .

getExtensionToFactoryMap ( ) . put (
17 ”ram” , new XMIResourceFactoryImpl ( ) ) ;
18 URI f i l eURI = URI . createFi l eURI (new java . i o .

F i l e ( args . get ( ”modelname”) . getAbsolutePath
( ) ) ;

19 Resource r e sou r c e = re sour c eSe t . c reateResource (
f i l eURI ) ;

20 r e sou r c e . getContents ( ) . add ( aspecttoSave ) ;
21 r e sou r c e . save ( java . u t i l . Co l l e c t i o n s .EMPTYMAP) ;

3.3 Specifying the Resolution using CVL
With the CVL VAM model, the application engineer can

do the selection according to the variability captured in the
VAM model. For this point, we automatically generate an
initial solution for the resolution model according to the
choice model constraints (cardinalities, isImpliedByParent,
DefaultResolution, . . . ). The application engineer can change
this choice resolution decision using a graphical tool as shown
in Figure 6. In this example, we take the decision to select
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Figure 6: The Workflow Resolution model

the ParallelExecution, ConditionalExecution and Synchro-
nization choices. The variable values are also set during
resolution. In our case, the application engineer must de-
fined the name of the composition directive aspect and the
URI of its resource 4.

3.4 Derivation of a Software Design using CVL
The tool screenshot shown in Figure 7 illustrates the entire

derivation process. Arrows a) and b) depict the VAM model.
Arrow c) shows a choice resolution. Arrow d) shows an OVP
which specifies the mapping to a specific RAM model (ob-
ject handle shown in arrow e)). Based on this model, the
derivation engine executes the code of the OVPs selected by
the choice resolution. The expression for the OVP bound
to the RAM aspect is generic and can be used as such for
new aspects than can be composed. Only the object han-
dle that maps to the concrete aspect must be respecified.
The CVL derivation engine and the workflow models can be
downloaded on our website 5.

3.5 Composing the Reusable Assets using RAM
Using the generated aspect model as input, the RAM

weaver recursively composes all dependent aspect models
to generate a complete design concern model that corre-
sponds to the selected configuration. In our case we selected
the ParallelExecution, ConditionalExecution and Synchro-
nization variants. As a result, the RAM weaver will com-
pose ParallelExecution, ConditionalExecution, Synchroniza-
tion, as well as the dependent aspects Outpath, Inpath, Key-
Counter, Named, ZeroToMany, and Map.

The resulting structural model is shown in Figure 86.
Since Outpath is instantiated both by ParallelExecution and
ConditionalExecution, there are also two instances of Map
that map Strings to WorkflowNodes. Map is used a third
time in Synchronization to map InpathNodes to Integers.

4An EMF resources is a container of persisted model ele-
ments
5http://www.irisa.fr/triskell/perso_pro/obarais/
pmwiki.php?n=App.VARY2012
6Again, only the classes directly related to the different kind
of workflow nodes are shown. The structure pertaining to
workflow execution (executors, execution contexts and pa-
rameters) have been omitted for space reasons.

Figure 7: The Workflow CVL model
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Figure 8: A Woven Workflow Design Concern Model

3.6 Discussion on the Use of OVPs
We could probably design the VRM to use other kinds of

variation points such as ObjectSubstitution or FragmentSub-
stitution. Nevertheless, in combining AOM and CVL, the
composition complexity is primarily in the aspect weaver.
Consequently, the derivation engine remains simple. Con-
sistency checking would, for instance, be part of the aspect
weaver, undisturbed by the presence of the OVP. Addition-
ally, we were able to build a generic OVP to create the aspect
composition directives. Checking this OVP only needs to be
done once. The CVL model could be further improved by
using ConfigurableUnit and ConfigurableUnitUsage to avoid
the eight repetitions of the same OVP. This will be investi-
gated in future work.

4. RELATED WORK
This section discusses related work on aspect-oriented mod-

elling and variability modelling approaches.
Because composing models by hand is a cumbersome task,

tools and approaches have been proposed that automate
significant parts of model composition [7]. The early as-
pect [15] and aspect-oriented modelling [1] workshop se-
ries introduced many aspect-oriented modelling (AOM) ap-
proaches that differ on (i) model composition activities, (ii)
the types of inputs required other than the 2 models to be
composed and (iii) the types of models that can be com-
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posed. We chose RAM in this work because of its abil-
ity to compose structural and behavioural models and be-
cause the existence of large aspect-oriented models that cap-
ture variabilities. Indeed, RAM has been applied to model
many software designs concerns. The biggest design con-
cern is the AspectOptima case study, a transaction sup-
port middleware product line [10, 11]. AspectOptima offers
support for multiple transaction models (flat, nested, mul-
tithreaded and open multithreaded transactions), different
concurrency control strategies (pessimistic lock-based and
optimistic time stamp-based), and different update strate-
gies (inlace and deferred update). However, even if we used
RAM in this paper, the proposed approach should also work
for other AOM approaches.

Many formalisms were proposed in the past decade for
variability modeling. For an exhaustive overview, we refer
the readers to the literature reviews that gathered variability
modeling approaches [16, 6, 2, 17, 3]. All formalisms for
variability modeling could be used following the approach
we introduce in this paper. In our case, we use the choice
diagram proposed by CVL, very similar to an attributed
feature diagram with cardinalities.

More recently, few works deal with the binding between
the feature in the variability modeling and the actual as-
sets. Let us cite for example FeatureMapper [5], which is a
tool for combining SPL and MDE that makes it possible to
bind a feature to a design model. Relying on CVL, we use
in our approach the provided action language to describe in
the realization model the binding between the features in
the choice model and the actual RAM assets. A dedicated
derivation operator is automatically obtained by implement-
ing a dedicated opaque variation point in the CVL generic
derivation operator.

Recently, several works have shown the benefits of cou-
pling aspect-oriented modelling approaches and variability
approaches. Voelter et al. [18] was the first to combine AOM
and MDE techniques to achieve an explicit separation of con-
cerns in software product lines. In the domain of software
architecture, we cite Morin et al. [12] and Parra et al. [13]
that combine architecture aspect models and feature models
to ease the design of adaptive systems. In [14], Perrouin et
al. proposes to specify variants by means of model fragments
and the product derivation process consists in merging those
fragments together.

5. CONCLUSION
In the Reusable Aspect Models approach, a design con-

cern is a collection of interrelated aspect models describing
a family of design solutions for a specific design problem.
This paper showed how we used CVL to specify an easy-to-
use product line interface for RAM design concerns. When
faced with a specific design problem for which a RAM de-
sign concern exists, an application developer can consult the
variation model provided by CVL to get an overview of all
possible design choices. After making her choice, she passes
the resulting resolution model to the CVL derivation engine,
which knows about how to map features to RAM aspect
models. Based on this knowledge, the derivation engine au-
tomatically creates an aspect that instantiates all the aspect
models that are needed for the designer. Using this aspect,
the RAM weaver generates a complete model of the chosen
design concern configuration.
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ABSTRACT
Feature models are menu-like hierarchies of features (i.e.,
configuration options) used in variability-rich software. Fea-
ture models have many applications such as domain analysis,
describing design and implementation constraints in soft-
ware, or for product configuration. The many applications
of feature models have given rise to a wide range of scenarios
involving feature model synthesis.

Feature model synthesis is the process of building a feature
model for a given set of features and their allowed combina-
tions, expressed as feature dependencies or feature config-
urations. We describe and classify software re-engineering
scenarios involving feature model synthesis found in liter-
ature and industry. We analyze these scenarios to derive
requirements for feature model synthesis techniques.

1. INTRODUCTION
Variability in software is the ability for the software to be

adapted and customized for a particular context [26]. Un-
fortunately, variability is not restricted to just one part of a
software system and is often scattered over multiple artifacts.
Variability could be abstract and be represented in a single,
variable artifact like a feature model. Alternatively, variabil-
ity could be realized as a configurable platform—a variable
artifact, or as a set of variants—where variability in each
individual artifact is resolved. Software product lines (SPLs)
are a form of variability-rich software that systematically
handle variability and enable code reuse across a family of
related products with common and variable product charac-
teristics [8]. Other examples of variability-rich software are
ecosystem platforms, such as the Linux kernel or the Eclipse
IDE, which support extensions and products rather than a
tightly-managed product portfolio.

Table 1 shows a classification of software artifacts with vari-
ability in feature-oriented, variability-rich software. Different
software systems use different combinations of these artifacts.
For example, feature-oriented SPLs have a feature model,
variation points (VPs), a mapping from features to VPs, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Phone

Processor NFC Camera 4G

ARM OMAP Snapdragon
implies

Figure 1: Feature model of a mobile phone product line

{ Phone, Processor, ARM, Camera },
{ Phone, Processor, ARM, Camera, NFC },
{ Phone, Processor, OMAP, Camera },
{ Phone, Processor, Snapdragon, Camera, 4G },
. . .

Figure 2: Legal configurations of the mobile phone FM

a configurable platform describing the implementation. Vari-
ation points (VPs) are locations in solution space artifacts
where variations occur. While VPs exist in the artifacts of a
platform, they form an interface between the abstraction and
realization of variability in the platform. SPLs are developed
with variable artifacts and instances are derived via feature
configurations based on a feature model.

Feature models (FMs), first introduced by Kang et al. [17],
describes features—the common or variable characteristics
of the products in a SPL—as a visual hierarchy with addi-
tional constraints between features. Since FMs were first
introduced, they have been used in a wide variety of tasks
such as domain analysis [17], model management [1], describ-
ing design or implementation constraints in variability-rich
software [9], and product configuration.

Figure 1 shows a FM of a mobile phone product line.
Features are represented as rectangles and may be optional—

Table 1: Breakdown of artifacts in feature-oriented software

Variability
Abstraction

Abstraction-
Realization
Interface

Variability
Realization

Variable
Artifacts

Feature
model

VPs and
feature-to-VP
mapping

Configurable
platform
requirements,

models, code, etc.

Instances Feature
configs.

VP configs. Variants
requirements,

models, code, etc.
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options SCHED_ULE # ULE scheduler
options PREEMPTION # Enable kernel thread preemption
options INET # InterNETworking
options INET6 # IPv6 communications protocols
...

Figure 3: Snippet of a FreeBSD feature configuration

denoted by an empty circle at the top—or mandatory—
denoted by a filled circle. An edge between features denotes
a dependency, where a solid line is used for the feature tree
and a dashed line is a cross-tree implies edge. Cross-tree
excludes edges can also exist in the diagram, but are not
shown. Features may also be part of a feature group. An
xor-group, specified with a clear arc, denotes that exactly
one member of the group must be selected if its parent is
selected. or-groups, where one or more members must be se-
lected, and mutex-groups, where zero or one members must
be selected, can also exist but are not shown in the figure.
The feature tree, feature groups, and cross-tree edges form
the feature diagram. A FM consists of the diagram and a
cross-tree formula to describe additional constraints. We use
the term cross-tree constraints (CTCs) to refer to cross-tree
implies and excludes edges, and the cross-tree formula.

The configuration semantics of a FM is a set of legal
configurations defined by the satisfying assignments to its
propositional formula [5]. Figure 2 shows some of the legal
configurations of the FM in Figure 1.

Some variability-rich software systems, such as FreeBSD—
an operating system kernel, do not have a FM and contain
a mixture of variable artifacts and instances instead. In
FreeBSD, feature configurations are used for different hard-
ware architectures and devices. For example, Figure 3 shows
a snippet from the generic i386 feature configuration con-
tained in the FreeBSD source code. Each line specifies a
feature to be included in the kernel.

FreeBSD is implemented as a configurable platform (Ta-
ble 1) in C using #ifdef statements for VPs. A feature-to-VP
mapping is realized as a build system. Configuration is driven
by creating feature configurations based on templates and
documentation. FreeBSD can benefit from having an explicit
FM describing variability among features. Synthesizing a
FM for FreeBSD is just an example of applying FM synthesis.
FMs can also be synthesized from requirements for domain
analysis, from code variants to drive configuration of existing
and future products, or from a set of other FMs as part of a
model management operation such as a model merge.

Feature model synthesis is the process of building a FM
given the following abstract input : (1) a set of features, (2)
allowed combinations represented as a set of feature depen-
dencies or configurations, and optionally (3) supplemental
information to help with tree and group recovery (e.g. tree
hierarchy). Figure 4 shows the workflow for feature model
synthesis.

Recovering the abstract input is done in a prior analy-
sis stage. Extracted VPs in solution space artifacts can be
interpreted as fine grained features that are close to implemen-
tation. In addition to features, analysis of the input artifact
extracts allowed combinations as either feature dependencies
or configurations. Synthesis can also be supplemented with
information extracted in the analysis stage, such as a tree
hierarchy, or feature descriptions.

Different synthesis scenarios assume different input arti-
facts (Table 1), each with different properties. In this paper,
we characterize several re-engineering scenarios that involve

Complete recovery
(over approximation)

Sound recovery
(under approximation)

Sound and complete
(exact) recovery

Arbitrary recovery

Configs represented by the input

Figure 5: Property of a transformation step

feature model synthesis found in literature and industry. We
compare the expected input artifacts, the analysis needed to
obtaining the input for synthesis, and the expected synthesis
result for each scenario. We derive requirements for feature
model synthesis techniques from these scenarios and discuss
existing synthesis techniques.

2. SCENARIOS

2.1 Feature Model Synthesis Workflow
The first stage in a scenario involving FM synthesis is anal-

ysis, where the abstract input is recovered from the input
artifacts (Figure 4). Whether dependencies or configura-
tions are recovered depends on the type of input artifacts
(Table 1). Dependencies can be recovered from a variable
artifact. Some projects provide feature configurations di-
rectly (e.g. FreeBSD), while other scenarios provide variants
that would require a separate step for recovering a feature
configuration describing each variant. For example, a re-
quirements document or codebase can realize a single variant.
The corresponding feature configuration is implicit in this
variant and would require analysis to recover.

Feature model synthesis builds a FM using the abstract
input. There are two components in this stage: tree recovery
where the feature tree is recovered, and group and cross-
tree constraint (CTC) recovery where feature groups and
CTCs are identified once a tree is determined. We use
this re-engineering workflow to describe the processes of the
scenarios in Section 2.3.

2.2 Scenario Criteria
In this section, we introduce the criteria used to classify

the re-engineering scenarios:

Input Artifacts. Table 1 lists the possible input artifacts
to feature model synthesis. The input could be variable
artifacts (i.e. artifacts with variability), such as a FM, or
a requirements document or code with VPs. Other input
type are feature configurations (i.e. sets of selected features)
or variants (i.e. artifacts with resolved variability), such a
requirements document or code for a particular product.

Precision of Configuration Analysis. The analysis step is
responsible for recovering features and feature combinations
needed for synthesis. We assume that the full set of features
is recovered prior to FM synthesis. This criterion classifies
the precision of recovering feature configurations (i.e., feature
combinations) from the input artifacts.

Figure 5 shows the classification of both the analysis and
synthesis stages with respect to its input feature configura-
tions. A sound and complete, or exact recovery is one that is
able to recover the exact set of configurations present in the
input artifacts. A complete recovery is one that does not lose
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Feature Model Synthesis

Analysis Tree Recovery Group and
CTC Recovery

Input
Artifacts

Feature
Tree

Feature
Model

Dependencies or
Configurations

Features

Supplemental
Information

Abstract Input

User Input User Input User Input

Figure 4: Feature model synthesis workflow

any configurations present in the input artifacts. Conversely,
a sound recovery is one that does not add new configurations
compared to what is the input.

Required Synthesis Precision. FM synthesis takes the ab-
stract input recovered in the analysis stage and synthesizes
a FM. The required synthesis precision is based on the preci-
sion of the abstract input and uses the same classification in
Figure 5. In this case, an exact recovery is one that synthe-
sizes a FM that describes exactly the configurations in the
abstract input. Note the definition of soundness and com-
pleteness in this paper are based on the set of configurations.
There is a duality between configurations and dependencies
such that a sound technique in terms of configurations is
complete in terms of dependencies and vice versa.

Size. We classify the size of each scenario by estimating the
number of features it requires for FM synthesis. A small
scenario has several hundred features. A medium size scenario
has roughly a thousand features, and a large scenario has
several thousand features. We base this categorization on
existing models found in literature and in FM repositories.
The 232 models in the SPLOT model repository have a
median of 20 features and at most 290 features1. BigLever
and pure-systems have reported that models in industry are
typically in the range of hundreds of features. In addition to
these models, we collected a set of 13 FMs from the systems
domain with a median of 1600 features [6]. The smallest FM
in this dataset was ToyBox with 71 features and the largest
was the Linux x86 kernel model2 with 6320 features. Finally,
FreeBSD is a variability-rich system with 1203 features2 that
could benefit from having a managed FM [25]. Researchers
have generated models with 5,000–10,000 features for testing
tools on large-scale FMs [18]. As more FMs become available
in the future, these numbers may change.

2.3 Scenario Descriptions
We have identified several scenarios from industry and

literature based on the artifacts types in Table 1. Figure 6
shows the workflow for each scenario and Table 2 classifies
each scenario according to the criteria previously described.

Scn. 1. Synthesizing from a Configurable Platform.
A configurable platform consists of variability-rich assets

with VPs. The platform could contain different artifact types,
such as requirements, models, or code. We separate the cases
below based on the input artifacts:

Scenario 1a. The input to this scenario is a configurable
platform of code with VPs. For example, the FreeBSD kernel
with 1203 features, is such a platform where the implementa-
tion is given in C with VPs defined using #ifdef preprocessor

1http://www.splot-research.org as of August 5, 2012
2as of Linux v2.6.32 and FreeBSD v8.0.0

statements. The first stage in this scenario is to identify VPs
and dependencies in the code using static analysis (Figure 6).
These VPs are fine-grained and are closely related to the
solution space and need to undergo a further feature ab-
straction step. While static analysis is typically automatic,
it is not guaranteed to find all dependencies between VPs.
As a result, the recovery of valid feature combinations is
complete but unsound (i.e., an over-approximation of the
configurations allowed by the platform). A sound synthesis
is needed to compensate for the over-approximated abstract
input. In other words, additional dependencies may need to
be introduced during the synthesis. This scenario motivates
our previous work on reverse engineering FMs [25].

Scenario 1b. The input in this case is a platform consisting
of a requirements document with variability (i.e. optional
requirements) describing a product line. Niu et al. [19] and
Weston et al. [27] both describe this scenario to motivate their
synthesis techniques. In Figure 6, requirements are first iden-
tified using a combination of natural language analysis and
the domain knowledge of an expert. These techniques treat
a feature as a group of requirements and use clustering to
build the tree hierarchy. For each cluster, an abstract feature
is introduced with the clustered requirements as sub-features.
This approach leads to the analysis and FM synthesis stages
being intertwined. User input is needed in this stage to name
abstract features or adjust the clustering algorithm. This
scenario also matches the experience described to us by an
industry partner in the automotive sector, but instead, the
requirements clustering and FM building were performed
manually. Niu extracted 22 features from two sample appli-
cations [19]. Weston used requirements documents describing
a Smart Home with 87 requirements in total [27].

Scn. 2. Synthesizing from Variants.
In this scenario, the input is a set of variants where vari-

ability in each artifact is resolved. Variants come in different
artifact and we separate this scenario into the following cases:

Scenario 2a. The variants are a set of related models
in this case. In Figure 6, the first step in this scenario is
to compare the variants and extract a set of VPs and VP
configs. Rubin and Chechik describe an approach for identi-
fying similarities between model instances by comparing and
matching model elements [20, 21]. Ryssel et al. also described
an algorithm that uses model matching and difference to
identify VPs and abstract the model variants into a set of
VP configurations [23]. Since the input artifacts are in the
solution space, VPs undergo a feature abstraction step. In
Ryssel’s scenario, the resulting FM must describe the exact
configurations provided as input [22], thus requiring an ex-
act synthesis. Ryssel’s performed two case studies for their
synthesis technique [23]. The first case study involved a set
of related models that had 14 features over 17 variants [23].
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Figure 6: Scenario workflows

The second case study had 415 features across 49 variants.

Scenario 2b. This case was described by an industry part-
ner and uses a set of requirements, each describing a specific
variant. The workflow is identical to Scenario 2a. The re-
quirements are compared and VPs are identified between
each document. Each requirements document is converted
to a VP configuration manually. The goal of the analysis
step was to describe the precise set of configurations (i.e.,
products) making this scenario an exact analysis. However,
the resulting FM is intended for domain analysis in this sce-
nario, thus requiring a complete synthesis that allows more
configurations than provided as input.

Scenario 2c. In this scenario at Danfoss drives described
by Jepsen et al. [16], code variants developed using a clone-
and-own approach are used as input. The developers first
compared and merged the code variants into a single code-
base by placing conditional compiler flags on code fragments
based on the products that contain the fragment. Each
conditional fragment is a VP. A VP configuration consists
of all included code fragments for a product. These VPs
were then abstracted to features and a FM is synthesized
from the resulting set of features and configurations. Simi-
lar to Scenario 2b, the synthesis is intended to allow more
configurations making it complete.

Scenario 2d. This case uses a set of VPs and VP configura-
tions directly as input where each configuration represents a
product in product line. This scenario was described to us by
an industry partner in the automotive sector. The company
wanted to build a FM that described their existing product
line and supported instantiation of future products. The
input configurations are exact, however, complete synthesis

is required to support additional configurations.

Scn. 3. Feature Model Operations.
Acher describes model management operations on FMs

that include merge, difference, or projection (slice) [1]. Sim-
ilarly, Fahrenberg et al. discuss use cases for a semantic
difference between models using FMs as an example [13].

The workflow in Figure 6 depicts the scenario realized
by Acher [1]. This scenario begins with a set of FMs as
input. The models are translated to propositional logic
through their configuration semantics [5]. The FM operation
is performed on the formula and used as input to an existing
synthesis technique [11]. This modified formula describes
the set of configurations from the input models, modulo the
operations semantics, making the analysis step sound. Unlike
the previous scenarios where user input is required for the
synthesis stage, Acher describes heuristics for automatically
determining the resulting FM hierarchy based on the input
FMs [1]. Thus, the FM operations are automated. FM
operations can be applied to FMs of any size. Acher applied
their implementation on the models in SPLOT where the
largest had 290 features, and also on generated models with
up to 2000 features [1].

Scn. 4. FM Merge Workflows.
Our last set of scenarios synthesize an individual FM for

each product, then apply a FM merge to create the final FM
describing all products.

Scenario 4a. In this scenario described by Acher et al. [2], a
configuration-like input in the form of a product descriptions
is used. However, product descriptions can contain variability
where a product could support one or more storage methods,
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Table 2: Scenario classification

Scn. Input Artifacts Form* Feature Combinations
Analysis Precision

Required
Synthesis Precision

Size

1a. Platform (code) D Complete Sound Medium–Large

1b. Platform (requirements) D Exact† Arbitrary Small

2a. Variants (models) C Exact Exact Small–Medium

2b. Variants (requirements) C Exact† Complete Small

2c. Variants (code) C Exact Complete Small–Medium

2d. Variants (VP configs) C Exact Complete Small

3. Feature models D Sound Exact Medium–Large

4a. Platform / Variants (descriptions) C/D Exact Exact Small

4b. Platform / Variants (requirements) C/D Exact† Arbitrary Small

*Abstract Input Form. C is configurations, D is dependencies.
†Analysis performed manually.

or exactly one operating system, for example. Each prod-
uct description is transformed into a product FM—a FM
describing the product and its variability. The product FMs
are then merged to create a FM describing variability in all
products (e.g. Scenario 3). Acher used product descriptions
ranging from 9 to 190 features as input [2].

Scenario 4b. In this case, a set of requirements documents,
each describing a single product, is used as input. Alves
et al. [3] applied clustering to build a FM describing each
document, then merged these individual FMs to create a FM
describing all documents. Chen et al. also applied clustering
to synthesize an individual FM for each requirements docu-
ment where each document describes a single variant [7]. The
individual FMs are then merged in a subsequent step. Alves
used two requirements documents with 59 and 23 require-
ments respectively [3]. Chen’s scenario included a sample
application with 23 requirements [7].

3. DISCUSSION
In this section, we derive requirements from the scenarios

and discuss existing synthesis techniques.

Input Form. The input artifacts distinguish one scenario
from another. In Scenarios 1 and 2, these artifacts abstract
to either dependencies or a set of configurations. For de-
pendencies, our previous work synthesized a model from
dependencies by using binary decision diagrams (BDDs) [11]
and SAT solvers [4]. Configuration-based approaches include
the FCA-based approach by Ryssel et al. [22], and the DNF
input for our approach [4]. Techniques for requirements oper-
ate on natural language text and combine both the analysis
and synthesis stages by using clustering [3, 19, 27].

Scenario 3 is a FM operation where a set of FMs are first
translated to their propositional formulas and an operation
is applied. The resulting formula is a set of dependencies and
can use any technique that supports dependencies, e.g. Acher
uses our BDD-based approach [11] for FM synthesis [1].

In Scenario 4, each artifact describes a product with added
variability. These abstract to individual product FMs and
are combined with a FM merge technique [1, 2, 3, 7] to form
the final FM describing all products.

Hierarchy. The first stage of synthesis is recovering the
feature hierarchy. However, given a set of valid configurations,
there is more than one possible hierarchy. Figure 7 shows two
FMs that describe the same configurations but with different
hierarchies. As a result, some synthesis techniques recover

A

B C
implies

A

B

C

Figure 7: Two feature models, same configurations

a directed acyclic graph (DAG) that represents all possible
feature hierarchies given the input [4, 10, 11, 12, 22].

Techniques have also been proposed to select a distinct
tree from the set of possible hierarchies. Our previous work
proposed a semi-automated technique using feature similarity
to select a tree [25]. Janota et al. developed an interactive
FM building tool that used dependencies and a recovered
DAG as input [15]. His approach guaranteed that the final
tree was complete with respect to the input configurations.
Hierarchy selection can be made automatic by using heuristics
to select the hierarchy. For FM operations (Scenario 3), Acher
determines a tree automatically by using heuristics based on
the input FMs [1]. Acher et al. combines both heuristics and a
manual specification for deriving the hierarchy from product
descriptions (Scenario 4) [2]. Clustering techniques build
hierarchy by grouping related requirements under abstract
features [3, 7, 19, 27].

Synthesis Precision. The precision of a synthesis technique
is dependent on the precision of the analysis step and the
expected use of the FM. For example, in Scenario 1a, the
abstracted feature combinations is complete, or an over ap-
proximation. As a result, a sound synthesis technique is
needed to add additional constraints to remove unwanted
configurations. However, the abstracted feature combinations
in Scenario 2b are exact, but require a complete synthesis to
remove unwanted constraints and support additional configu-
rations. Our previous work [4, 11] and Ryssel’s approach [22]
derives an exact FM describing the input. We later extended
our approach with a feature similarity heuristic to deal with
complete, but unsound input [25]. The interactive model
building tool by Janota et al. support building FMs that are
complete with respect to the input. Clustering techniques
are not focused on maintaining a set of input feature combi-
nations, but are geared towards exploratory activities such as
domain analysis. As a result, we classified the required syn-
thesis precision as arbitrary, since constraints can be added
or removed during FM synthesis.
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Scalability. The input form affects the scalability of a synthe-
sis technique. Techniques that use dependencies as input are
more scalable than techniques that use a set of configurations
since dependencies represent a set of configurations symboli-
cally. Other factors that affect a synthesis technique’s scala-
bility is the required amount of user interaction. Techniques
requiring significant user interaction become intractable as
the size of the models grow. However, user interaction can be
replaced by using heuristics to automate the process and is
largely dependent on the supplemental information extracted
from the input artifacts (e.g. hierarchy data). Finally, the rea-
soning technique can affect a synthesis technique’s scalability.
We found that our SAT-based implementation significantly
improved upon our BDD-based approach [4]. Ryssel et al.
use a FCA-based approach [22]. An evaluation comparing
the different reasoning techniques is planned for future work.

Probabilistic Feature Models. A special case involves synthe-
sizing a probabilistic FM from configurations. A probabilistic
model provides soft constraints that are valid in most con-
figurations, but not necessarily all [10]. Our previous work
recovered a probabilistic FM describing framework usage in a
set of applications [24]. Dumitru et al. recover a probabilistic
FM for a recommender system that suggests features for do-
main analysis [12]. Fukuda et al. build a probabilistic model
to identify trends in a product transaction database [14]. We
proposed a technique for building a probabilistic FM by using
association rule mining on a dataset of configurations [10].

4. CONCLUSIONS
As FM usage has grown in practice, FM synthesis has be-

come involved in an increasing number of scenarios. In this
paper, we have described the workflows and classified several
software re-engineering scenarios involving FM synthesis. We
have derived requirements from these scenarios for synthesis
techniques and briefly contrasted them with the existing
techniques. We hope the scenarios and requirements pre-
sented in this paper encourage research on new FM synthesis
techniques and improvements to existing techniques.
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ABSTRACT 
Usually software product variants, developed by  clone-and-own 
approach,  form  often  a  starting point  for  building  Software  
Product  Line (SPL). To migrate software products that deemed 
similar into a product line, it is essential to trace variability among 
software artifacts because the distinguishing factor between 
traditional software engineering and software product line 
engineering is the variability. Variability tracing is used to support 
conversion from traditional software development into software 
product line development and automate products derivation 
process such that core assets can be automatically configured for a 
product according to the features selection from the feature model. 
Tracing and maintaining interrelationships between artifacts 
within a software system also are needed to facilitate program 
comprehension, make the process of maintaining the system less 
dependent on individual experts. This paper  presents a method 
based on information retrieval approach namely, latent semantic 
indexing,  to establish traceability links between object-oriented 
source code of product variants and intended feature model as 
representative of variability model.  
Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement–Restructuring, reverse engineering, and 

reengineering; H.3.3 [Information Systems]: Information Search 
and Retrieval- Clustering , Information filtering. 

General Terms 
Theory, Design, Documentation. 

Keywords 
Traceability links, feature models, source code, variability, 
software product line, latent semantic indexing. 

1. INTRODUCTION 
Product variants often evolve over the time from an initial product 
to a family of similar product variants that meet the need of a 
large group of consumers. The successful development of the 
initial product attracts new customers. For example, Wingsoft 
Financial Management System (WFMS) was developed for Fudan  

 
University and then evolved many times so that all evolved 
WFMS systems have been now used in over 100 universities in 
China [18]. 
Usually, developers use copy-paste-modify technique to build a 
new product variant from existing ones. When  number of features 
and product variants grows, ad hoc reuse technique causes  
critical problems such as: we must maintain each product variant 
separately from others and it also becomes difficult to find and 
trace features for reuse in new products. 
As these problems accumulate, it became necessary to re-
engineering product variants into a SPL for systematic reuse. SPL 
is a set of software-intensive systems sharing a common, managed 
set of features that satisfies the specific needs of a particular 
market segment or mission and that are developed from a common 
set of core assets in a prescribed way [5]. SPL aims to decreasing 
development cost and time by developing a family of systems 
rather than one system at a time [17]. In SPL, there are two 
models: feature model (FM) as representative of variability model 
and core asset model. FM has a pivot role because it represents a 
set of configurations where each valid configuration represents a 
specific product and it also is extensively used to automate the 
product derivation process [5]. Figure1 shows an example of a 
simplified FM inspired from mobile media feature model [3].  

There are three issues that must be considered to reengineering 
product variants into SPL: extraction of a FM for product 
variants, building SPL artifacts (core assets model) and mapping 
between FM and SPL artifacts [13].   

FM of product variants can be provided by system’s developers 
and domain experts who accompanied and contributed product 
variants evolution. FM may also be reverse engineered from the 
documentations of products variants [1]. 

 
Figure 1. A sample feature model [6]. 

Regarding building SPL artifacts, the development team can 
utilize and benefit from the available reusable elements such as: 
source code, design documents, test cases, etc. to build the 
required SPL core assets. 
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19



These parts (FM and core asset model) must be connected to 
exploit them during SPL life cycle [13]. The traceability links 
between source code of product variants and their FM are be used 
to automate products derivation process in order to automatically 
configures all the assets for a product according to the features 
selection from the FM, ensure consistency between extracted FM 
and source code, facilitate program comprehension process, make 
the process of maintaining the system less dependent on 
individual experts and recovery of various architectural elements. 
A lot of work [2,12,19] has addressed recovering traceability links 
between software artifacts and sometimes between FM and source 
code but that work does not use information related directly to 
FM such as common and variable features, and other available 
information [7]. 
Our paper proposes a method based on information retrieval (IR) 
methods namely, latent semantic indexing (LSI), considering 
information provided by FM to establish and maintain traceability 
links between source code of product variants and textual 
description of features as representative of FM. Features 
description can be extracted from documentation and code 
comments. 
IR has proven useful in many disciplines such as image 
extraction, speech recognition, horizontal search engines like 
Google and software maintenance and evolution. Furthermore 
feature location is one of the most common applications of IR in 
software engineering [4]. We believe that IR techniques can 
provide a way to establish the traceability links between source 
code of product variants and their FM.   
The remainder of this paper is organized as follows. Section 2 
discusses background and related work. Section 3 shows the 
traceability links recovery process. Section 4 details latent 
semantic indexing. Section 5 shows the experimental results. 
Finally, Section 6 presents conclusions and feature work.    

2. BACKGROUND & RELATED WORK 
Software traceability is the ability to describe and follow the life 
of an artifact (requirements, code, tests, models, reports, plans, 
etc.) developed during the software lifecycle in both forward and 
backward directions (e.g., from requirements to the software 
architecture and the code components implementing them and 
vice-versa) [8]. 
Traceability relations can refer to overlap, satisfiability, 
dependency, evolution, generalization/refinement, conflict or 
rationalization associations between various software artifacts 
[14]. In general, traceability  relations  can  be  classified  as  
horizontal  traceability  or vertical  traceability  relations. The 
former type refers to relationships between different levels of 
abstraction (e.g. from requirements to design to implementation) 
and the latter type refers to relationships between artefacts at the 
same level of abstraction (e.g. between related requirements) [11, 
16]. 
FM is a variability modeling technique widely used in SPLE to 
cover the variability in all SPL life cycle from requirements to test 
cases [3]. Variability defines what the allowed combinations of 
features (also called configurations) are. FM consists of feature 
diagram and cross tree constraint likes require and exclude 
constraints. Feature diagram is a tree like representation, the root 
of the tree refers to the complete system, tree nodes are features 
and tree edges represent dependency rules [15]. In the literature, 

there are many definitions of feature; in this paper we will 
consider the following definition [9]: 

“A distinctively identifiable functional abstraction that must be 
implemented, tested, delivered, and maintained.” 

Many researchers attempted to establish traceability link via 
information retrieval (IR) approach. IR-based approaches assume 
that all software artifacts are in textual format. Then, they 
compute textual similarity between two software artifacts using 
cosine similarity, e.g., a class and a requirement. The  three    IR  
methods which  commonly  used in  traceability generation  are 
probabilistic method (PM), vector  space  method (VSM)  and 
LSI [2]. 
Antoniol et al. [2] used PM and VSM to establish traceability 
links between C++ source code to manual pages and Java code to 
functional requirements. In each method, one type of particular 
artifacts represents a query and another type of artifacts represents 
a document. For example, source code represents a query against 
functional requirements as a document. Traceability links are 
retrieved by applying cosine similarity between two types of 
artifacts. 
Andrian et al. [12] used LSI to establish traceability links between 
source code files and manual sections. A set of experiments was 
conducted and experimental results proved that LSI performs at 
least as well as Antoniol’s methods using PM and VSM with low 
processing of source code and documentation. 
Ghanam et al. [7] assumed that there are traceability links between 
FM and source code for a given system and as systems evolve, the 
traceability links become broken or outdated so this work 
presented an approach to keep the already existing traceability 
links up to date by using executable acceptance tests (EAT). EAT 
refers to English-like specifications (such as: scenario tests and 
story tests) that represents the specifications of a given feature and 
can be executed against the system to test the correctness of its 
behaviour. 
Ziadi et al. [19] proposed an approach to automate feature 
identification from the source code of similar products variants. 
This approach assumes that product variants use the same 
vocabulary to name packages, classes, attributes and methods; it 
treats the source code as a set of construction primitives and then 
applies an algorithm to identify features. However this approach 
cannot identify the separated mandatory features because it 
gathers all common construction primitives for all products as a 
single mandatory feature. 

3. OUR APPROACH TO RECOVER 

TRACEABILITY LINKS   
This section describe our proposed approach to recover 
traceability links between source code of product variants and 
their FM. Figure 2 gives an overview about the recovering 
traceability links process. The inputs of this process are product 
variants FM, features description and object-oriented source code 
of product variants. The figure also highlights two main phases: 
1. Variability point extraction: In this phase, variability points 

are reversed engineered from the source code where it can 
reflect four types of variations:  

 Package variation: means a set of packages that make 
the differences among product variants in term of the 
provided functionality. 
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 Class variation: means a set of classes that make the 
differences among product variants in term of the 
provided functionality, considering that all product 
variants have the same packages. 

 Method variation: means a set of methods that make the 
differences among product variants in term of the 
provided functionality, considering that all product 
variants have the same classes and packages. 

 Attribute variation: means a set of attributes that make 
the differences among product variants in term of the 
provided functionality, considering that all product 
variants have the same methods, classes and packages. 

This paper will consider just class variation as a variability 
point in the source code.  

2. Applying a traceability method: In this phase, we will use 
LSI to recover traceability links between source code and 
FM according to our mapping model as shown in the figure 
3. In this model, variability (variable features) can be 
implemented by four types of variations: package variation, 
class variation, method variation and attribute variation.  
In the following sections, we will explain in more details 
about LSI method.  

  Figure 2.Traceability recovering process overview. 

Figure 3: Feature to source code mapping model. 

4. LSI AS A RECOVERING 

TRACEABILITY LINKS METHOD 
LSI is a technique that projects queries and documents into a 
space with latent semantic dimensions. The basic assumption of 
LSI is that there exists some implicit relationships among the 
words of documents, that is to say, there are some latent semantic 
structures in free text (e.g. a set of words that always appears 

togther has an imlicit relationship). In the LSI,  a  query  and  a  
document  can  have  high  cosine similarity  even  if  they  do  not  
share  any  terms  -  as  long  as  their  terms  are semantically  
similar  [12].  
LSI tries to overcome two classic problems arising in natural 
languages: synonymy and polysemy, by replacing the original 
term–document matrix with an approximation. This is done using 
singular value decomposition (SVD), a technique originally used 
in signal processing to mitigate noise while preserving the original 
signal. Assuming that the original term–document matrix is noisy 
(the aforementioned synonymy and polysemy), the approximation 
is interpreted as a noise reduced by reducing the dimensionality 
without great loss of descriptiveness [10]. 
LSI will use features description as query to retrieve the classes 
related to the feature. In most object oriented languages classes’ 
names are composed of concatenated terms like 
(EmailAddressFormatChecker) so that each term reflects partially 
the class functionality. We assume that programmers use 
meaningful names (i.e. names derived from the domain) to name 
classes. 
Features descriptions and classes’ names must be manipulated and 
normalized to become suitable as input of LSI. This preprocessing 
step include:  all capital letters must be transformed into lower 
case letters, removing stop-words (such as articles, punctuation 
marks, numbers, etc.), all classes’ names must be split into terms 
and performing word stemming. 
LSI as a recovering traceability links method is comprised of the 
following steps [12]: 
1. Constructing a term-document matrix whose [i, j]th element 

refers to the association between the ith term and jth 
document. In our work, terms represent all extracted words 
from classes’ names and features description while 
documents represent classes’ names. We will measure the 
weight of each term using TF-IDF (term frequency–inverse 
document frequency).  

2. Dividing term-document matrix into LSI subspace by 
applying SVD. SVD is performed on the matrix to determine 
patterns in the relationships among the terms. The optimal 
number of dimensions is typically around between 200 and 
300 and may vary from corpus to corpus, domain to domain.  

3. Computing the cosine similarity in LSI subspace by 
equation1. Where Q refers to a query, i ranges over the entire 
documents set, Wj refers to elements of query and document 
vectors. 

 
4. Filtering results according to a predetermined threshold, and 

then the traceability links between FM and source code are 
established. Classes that will be retrieved have a similarity 
with a feature description greater than or equal the threshold 
value. In our work, threshold value will be determined in a 
heuristic way. 

The effectiveness of IR methods is measured using IR metrics: 
recall and precision. For a given query, recall is the percentage of 
correctly retrieved links over the total number of relevant links 
while precision is the percentage of correctly retrieved links to the 
total number of retrieved links (see equation 2 and 3) where (i) 
represents query set [2]. 
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Where i ranges over the entire features set. Both measures have 
values in [0, 1]. If recall equals to 1,  it  means  that  all  the  
relevant  links  are recovered,  however  there  could  be  
recovered  links  that  are not relevant. If the precision equals to 1, 
it means that all the recovered links are relevant, however there 
could be relevant links that were not recovered. Choosing a  
higher threshold  for the link recovery  will  result  in  higher  
precision,  while lowering  the  threshold  will  increase  the  
recall. 
It is important to mention her that LSI, in our work, will be 
applied two times. First, to recover traceability links between 
common feature and common classes while the second time to 
recover traceability links between variable features and variable 
classes. This task aims to improve precision and recall values by 
reducing search space. We can extract common classes by 
conducting a lexical matching among product variants’ classes 
while other classes form variable classes. 

5. EXPERIMENTAL RESULTS 
In order to validate our approach as traceability recovering 
method between source code and FM, we will consider simple 
mobile media software to test this method. Figure 2, in the 
introduction section, represent a simplified FM for mobile media 
software. Favourites, Copy_Media and SMS_Transfer are 
optional features while View_Play_media and Basic_Operations 

are mandatory features. Media is alternative feature. Three 
configurations were chosen to realize three products including all 
mobile media features. In order to process a source code, a java 
parser like abstract syntax tree (AST) is needed to extract all 
source code elements. 
We assumed that each feature is described with certain words as 
shown in the table 1 below. For example, SMS_Transfer feature 
in the row 6 is described by send photo and receive photo. 
Also, we assumed that each feature is implemented with certain 
classes as shown in the table 2. For example, Favourites feature 
in the row 4 is implemented by SetFavourites and 

ViewFavourites classes. 
Table1. Features description. 

 
Table  3  summarizes  the results  we  obtained  on  recovering  
the  traceability  links between  source  code and FM using LSI.  
The first column represents the threshold value of cosine 
similarity. Traceability links with similarity value greater than or 
equal to the threshold value just will be considered.   
 

Table 2. Real implementation of features 

 
Column  2 represents  the  number of  correct  links  retrieved,  
column  3  represents  the  number  of  incorrect  links retrieved,  
column  4  represents  the number  of correct links  that  were  not 
retrieved,  column 5  represents  the  total  number  of retrieved  
links  (correct  +  incorrect),  and  the  last  two columns are the 
precision and recall values. 

Table 3. LSI results. 

Threshold Correct 

links 

retrieved 

Incorrect 

links 

retrieved 

Missed 

links  

Total 

links 

retrieved 

Precision Recall 

0.50 21 5 5 26 0.80 0.80 

0.55 20 3 6 23 0.87 0.77 

0.6 20 2 6 22 0.91 0.77 

 
Table 4 shows an example about the traceability links between 
source code of product variants and their FM. Based on LSI 
method, Copy_Media feature is linked to StoreMedia, 
PlayMedia and CopyMedia classes with cosine similarity greater 
than or equal to 0.60. When comparing the expected 
implementation of Copy_Media feature with its real 
implementation, we found that number of correct links equals to 
2, number of incorrect links equals to 1 while number of missed 
link equals 0. 

Table 4. An example for traceability links. 

Feature Name Class Name Similarity 

Copy_Media 

StoreMedia 0.9517 

PlayMedia 0.7844 

CopyMedia 0.6797 

 
Based on table 3, we can note that recall and precision values are 
the same when threshold equals 0.50 because number of retrieved 
links equals number of relevant links. Also, we can note that when 
the threshold value increases, precision improves while recall 
deteriorates. Based on our example, LSI gives high precision and 
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recall values when it is used to establish the traceability link as 
show in the table 3. 

6. CONCLUSIONS AND FUTURE WORK 
This paper presents a method based on information retrieval 
namely, LSI, to establish traceability links between object-
oriented source code of product variants and their FM. This 
method establishes the traceability links based on cosine similarity 
between features description and classes names.   
The results obtained in the simple reported case study proved that, 
in general, LSI can be used to recover traceability links between 
FM and object oriented source code of product variants with high 
recall and precision to achieve the following main targets: 

 To support conversion from traditional software 
development into software product line development and 
that leads to automate products derivation process. 

 To ensure consistency between the FM and the code artifact 
by tracing commonality and variability in the source code 
artefact. 

 To facilitate software evolution and maintenance. 
As future work we will consider other types of source code 
variations (package variation, method variation and attribute 
variation) and use all other information provided by the FM (such 
as cross tree constraints, alternative features and ect.) to recover 
more reliable traceability links. Also we can combine LSI with 
formal concept analysis (FCA) to find dependency between 
product variants features.  
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ABSTRACT
Business Processes (BP) exist in many variants depending
on the application context. The use of variability mech-
anisms in BPs becomes essential for organizations to re-
duce development and maintenance efforts. However, such
mechanisms entail big challenges. At design time, poor
model specifications can turn process variants into difficult-
to-maintain and understand artifacts. At runtime, process
variants require continuous adaptations to achieve business
goals in highly dynamic execution contexts. In order to ad-
dress these challenges, in this paper we present a proposal to
manage process variants at design time and runtime. At de-
sign time, process variants are modeled by combining a BP
modeling language with the Common Variability Language.
Then, at runtime, based on the created models and on the
current context, process variants are adapted by means of
MoRE-BP, a reconfiguration engine that is capable of per-
forming dynamic adaptations automatically. An online-shop
scenario illustrates our proposal and a proof-of-concept pro-
totype validates its feasibility.

Keywords
Business Process Variability, CVL, Self-Adaptive Business
Processes, Models at Runtime

1. INTRODUCTION
A Business Process (BP) consists of a set of related activities
whose execution reaches a specific goal [29]. The increasing
adoption of BPs in recent years has resulted in large reposi-
tories with numerous collections of BP models [24, 11]. Since
these models often vary depending on the application con-
text (i.e., the execution environment) [13, 23], the existing
repositories usually comprise large collections of related pro-
cess variants. Examples of such collections can be found in
almost every domain. For example, [14] describes a repos-
itory for vehicle repair and maintenance comprising more
than 900 process variants that depend on country, garage,
and vehicle differences. Another research shows more than

90 process variants for handling medical examinations [20].
These process variants pursue the same or similar business
objective (maintenance of vehicles in a garage or the treat-
ment of a patient). However, they differ in their logic due to
varying application context either at design time (e.g. exist-
ing regulations in different countries and regions) or runtime
(e.g. type of car being repaired) [11, 26]. In such situations,
managing properly process variants constitutes a fundamen-
tal challenge to reduce development and maintenance efforts
[21]. However, managing process variants is not a trivial
task. Although different proposals have been developed to
deal with variability in BPs at design time [22, 25, 14], their
current support to represent such variability is limited. For
example, not all the perspectives contained in a BP model
(i.e., functional, behavioral, organizational, informational,
operational, and temporal) are addressed. Therefore, pro-
cess variants become error-prone and complex to build, man-
age, and understand [13]. In addition, to deal with highly
dynamic execution contexts, adaptation techniques are nec-
essary to properly change running process variants so that
the real business world is accurately reflected [28]. There-
fore, adaptability of process variants at runtime emerges as
a necessary underlying capability for BPs that are executed
in changing contexts [16].

Our contribution is a proposal to support process variants
at design time and runtime. On one hand, at design time
we define the process variants in such a way that variabil-
ity is considered as a first-class concern during the mod-
eling process. For this purpose, we choose the Common
Variability Language (CVL) [15]. CVL provides the mech-
anisms to represent variations in any Domain Specific Lan-
guage (DSL). A big advantage of using CVL is that DSLs
do not have to be extended or overloaded with variability
information [12]. Specifically, we combine CVL with the
Business Process Modeling Notation (BPMN), the standard
DSL to represent BPs. CVL plays a key role when combin-
ing it with BPMN because neither the current specification
of BPMN supports process variability modeling nor current
BPMN execution engines support variability. On the other
hand, at runtime we rely on models at runtime [7] to per-
form dynamic adaptations of process variants according to
the current context. Instead of programming cumbersome
and error-prone code to carry out such adaptations, mod-
els at runtime allow to reuse the knowledge created with
CVL at design time to guide the adaptations during execu-
tion over the underlying technologies [8, 1]. Adaptations are
automatically achieved by our Model-based Reconfiguration
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Engine for Business Processes (MoRE-BP). MoRE-BP au-
tomatically transforms the adapted process into executable
code (i.e., BPEL code), which in turn is hot-deployed in an
execution engine. MoRE-BP is an extension of MoRE-WS,
which has been successfully used in the autonomic adapta-
tion of Web service compositions using models at runtime
[1].

The reminder of this paper is structured as follows: Sec-
tion 2 provides the foundations of our proposal. Section 3
presents the case study that is used to illustrate the pro-
posal. Section 4 describes how we make use of CVL to deal
with BP variability. Section 5 describes our proof-of-concept
prototype. Section 6 presents related work. Finally, Section
7 concludes the paper and outlines the future work.

2. FOUNDATIONS
This section provides the foundations for the three major
topics our proposal relies on, which are BP modeling, models
at runtime, and autonomic computing.

2.1 Business Process Modeling
BP models define how business goals can be achieved. Thus,
they should accurately represent the organizational reality
relevant for reaching a specific goal [29]. This is done by
the following set of concepts: Activities, Connectors, Edges,
Resources, Events, Operations, and Data objects. These
concepts define the activities that should be done (what),
their coordination and implementation (how), the events
that trigger the activities (when), and the resources (who)
and data that are involved. In combination, such concepts
cover the different perspectives that can be found in a BP
model (i.e., functional, behavioral, organizational, informa-
tional, temporal, and operational) [10]. In our previous
work, we have focused on supporting variability in the orga-
nizational, informational, and temporal perspectives [2]. In
this paper, we extend our previous research to support vari-
ability in the functional and behavioral perspectives (i.e.,
activities and their coordination).

2.2 Models at Runtime
Models are typically used to describe systems using con-
cepts that abstract the system knowledge over the underly-
ing computing technologies. The purpose of models at run-
time is to extend the use of models from design time to
execution time [7]. In this way, the modeling effort made at
design time is not only useful for producing the system, but
also provides a richer semantic base for reasoning, monitor-
ing, or adapting the system during execution [8, 1]. Thus,
by using models at runtime, the knowledge gathered in BP
models can be used during execution to drive BP adapta-
tions. In order to use BP models at runtime, they have
to be linked in such a way that they constantly mirror the
system and its current state and behavior. It means that
if the system changes, the models change accordingly, and
vice versa.

2.3 Autonomic Computing
Inspired by biology, autonomic computing [17] has evolved as
a discipline to create software that self-manage in a bid to
overcome the complexities to maintain systems effectively.

Autonomic computing covers the broad spectrum of com-
puting in domains as diverse as mobile devices [30] and
home-automation [8], thereby demonstrating its feasibility
and value by automating tasks such as installation, healing,
and updating. Since doing manual adaptations is a difficult
task, our proposal is based on IBM’s reference model for
autonomic control loops [18] (which is sometimes called the
MAPE-K loop) to automatically adapt process variants.

3. CASE STUDY
In order to illustrate our proposal, we use a typical process
for product shopping in an online shop such as Amazon (cf.
Fig. 1). The process starts when a customer looks for a
product on the shop’s website. If the product is not found,
the customer can refine the search. Otherwise, the product
information and a list of related products are presented to
the customer. Afterwards, the customer selects the product
in which he or she is interested in. Once this selection has
been performed, the customer is identified as an authorized
user. If the identification is successful, the product has to
be paid. The payment is carried out depending on the cus-
tomer preferences: Visa credit card, PayPal, mobile phone
payment, or using the shop’s card (a special credit card for
VIP customers). When using the shop’s card, the system
asks for a specific PIN that only the VIP members know.
Then, the product can be delivered to the customer by a
shipping company or the customer may want to pick it up
in a collection point. Usually, delivery is carried out by UPS.
However, if UPS does not operate in a specific country, de-
livery is carried out by DHL or FedEX. The process finishes
by sending a confirmation e-mail to the customer.

Despite it is a simple process, there are 16 process variants
depending on either the type of payment or the shipping
company. According to the process specification, all possible
process variants from the online product shopping process
(cf. Fig. 1) can be defined at design time since the different
alternatives (e.g. UPS and DHL) are known in advance.
However, depending on runtime decisions (e.g. customer
preferences), some adaptations of process variants may be
required. In addition, since an online shopping process is
expected to be available 24/7, these adaptations need to be
carried out without stopping the system.

4. HANDLING VARIABILITY IN BUSINESS
PROCESSES

This section describes our proposal to manage variability in
BPs which covers two phases: 1) at design time when the
process variants are modeled, and 2) at runtime when the
process variants are adapted in response to context changes.

4.1 Process Variant Modeling
At design time, the aim is to properly model the existing
process variants. Current proposals model process variants
by extending the original DSLs (e.g. BPMN, EPC, or UML
Activity Diagrams) [22, 25, 14]. However, most of these
works result in complex models that are overloaded with
variability specifications [13]. On the contrary, CVL pro-
vides the mechanisms to represent variations in a separate
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Figure 3: Variation model for the online product
shopping process

way. Therefore, CVL alleviates the impact that variabil-
ity issues have on the BP model, resulting in better legi-
bility, understandability, and scalability [15]. CVL is based
on the Base-Variation-Resolution (BVR) approach that is
supported by three models: the base model, the variation
model, and the resolution model [6]. We model the process
variants according to this set of models.

First, the base model is used to specify commonalities be-
tween the process variants (i.e., process fragments that are
shared by all process variants). In addition, this model spec-
ifies the placement fragments (placements for short) of the
model that may vary (i.e., variation points). Fig. 2 depicts
the base model of the online product shopping process. Only
two variation points are defined in this case (i.e., Pay product
and Deliver product). These variation points already include
process fragments for their execution (i.e., Pay through visa
and UPS respectively).

Then, the variation model is used to specify the replacement
fragments (replacement for short) that alternatively exist
for the placements defined in the base model. Fig. 3 shows
the variation model for the online product shopping process.
Specifically, it depicts the possible replacements for the Pay
product and Deliver product placements.

The resolution model is used to specify the set of context
conditions that determine the conditions under which the
replacements can be instantiated. Fig. 4 illustrates an ex-
ample of a resolution model for the online product shopping
process. This model is structured in two blocks: 1) the appli-
cable fragments block specifies the selected replacements for
the placements of the base model (i.e., the Pay product place-
ment will be instantiated with the PayPal replacement); 2)
the context conditions block specifies the context conditions
that determine the instantiation of the replacements. For ex-
ample, in order to instantiate the PayPal replacement, the
PayThroughPayPalService selected context variable has to
be valued to TRUE. The value of this variable is stated at

P
a

y
P

a
l

Applicable fragments:

Pay Product: PayPal

Context conditions:

PayThorughPayPalService_selected = ”TRUE”

Figure 4: Example of a resolution model for the Pay
product placement

runtime when the customer selects the type of payment.

Finally, we propose a context model to support the formal
reasoning of the context information. Specifically, we pro-
pose and ontology-based model since it provides a strong
semantic vocabulary for the representation of the context
knowledge and for describing specific situations in the con-
text [1]. The main benefit of the context model is that it
enables the analysis of the domain knowledge using first-
order logic.

4.2 Variability Management at Runtime
Since the BP current execution context can be highly dy-
namic, process variants need to be adapted at runtime to
better achieve business goals. Therefore, this section de-
scribes our proposal to perform the dynamic adaptation of
process variants. Specifically, the base model is dynamically
adapted according to the variation model. Adaptations are
supported by a computing infrastructure based on the com-
ponents of the MAPE-K loop, i.e., Monitor, Analyze, Plan,
Execute and Knowledge (cf. Fig. 5) [18]. In our case, sen-
sors collect information about the BP’s context and actu-
ators carry out changes in the BP at runtime. Variability
management at runtime is described as follows in the context
of MAPE-K phases.

Monitor. In order to support the dynamic adaptation of
the base model, it is necessary to collect information about
the context. This task is in charge of the Context Moni-
tor. The collected information is used to update a stream
database that deals with continuous online data streams.

Analyze. The stream database that is updated with the
measures taken from the context needs to be queried to de-
termine if any adaptation has to be carried out. This task is
in charge of MoRE-BP, which periodically queries the stream
database to find new context information. When a new con-
text event is found, MoRE-BP inserts it into the context
model. Then, MoRE-BP evaluates the values of this model
to find out if a context condition has been accomplished. For
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instance, the PayThroughPayPalService selected=TRUE con-
text event (i.e., the user prefers to pay through PayPal) ac-
complishes the PayThroughPayPalService selected context
condition that triggers an adaptation in the Pay Product
placement.

Plan. In this step, MoRE-BP generates an Adatation Plan,
which contains a list of actions to adapt the base model.
These actions are stated as CVL actions called fragment
substitutions. Concretely, one fragment substitution replaces
the process fragment included in any placement of the base
model with any replacement of the variation model. For
such substitutions, CVL uses the concept of boundary points.
These points record the inbound and outbound references to
and from the placement where the substitution takes place,
the replacement to be replaced, and the new replacement
(i.e., fragment connections). Therefore, a fragment substitu-
tion (FS) can be defined as follows:
FS = ( (PlacementInboundReference, FragmentToBeReplaced,
PlacementOutboundReference), (ReplacementInboundReference,

Replacement, ReplacementOutboundReference) )

For example, given the PayThroughPayPalService selected=
TRUE context condition, the resulting Adaptation Plan is
the following:

FS = ( (Pay ProductsInputSequenceEdge, Pay through Visa,
Pay ProductsOutputSequenceEdge),

(PayThroughPayPalInputSequenceEdge, Pay through PayPal,
PayThrough PayPalOutputSequenceEdge) )

Execute. Once the adapted base model is obtained, it is
necessary to hot deploy1 it in the Execution Engine. To this
1Hot deployment is the process of adding new components
to a running server without having to restart it

end, MoRE-BP creates a deployment directory for all the rel-
evant deployment artifacts (i.e., the deployment descriptor
and the process schema (i.e., the BPEL file). This directory
is put into the Web application directory of the Execution
Engine. We have implemented a versioning strategy for the
deployment directory to prevent the Execution Engine from
deleting all the running process instances when a new pro-
cess schema is deployed. To this end, a new deployment di-
rectory with an increasing version number is deployed with
every adaptation. This approach is in line with the dynamic
adaptation of service compositions at the process schema
level [27]. In this way, adaptations that are applied to the
process schema are propagated to all process instances that
run on this schema. Then, the adapted base model is trans-
formed into the executable code (i.e., BPEL), which is in
turn hot deployed in the execution engine.

5. PROTOTYPE IMPLEMENTATION
A prototype system validates the feasibility of our proposal.
In order to create the set of models described in Sec. 4,
we use the following tools. First, the base model and the
variation model are defined with the Eclipse BPMN Mod-
eler2. Then, we make use of the CVL Editor3 to create a
CVL Model. This model supports CVL variability elements
(i.e., placements and replacements) independently from the
original DSL (e.g. BPMN). Simple references are used to
relate these elements to the fragments of the base and vari-
ation models that conform to the placements and the re-
placements, respectively (cf. Fig. 6). A set of APIs have
been implemented for integrating the CVL Editor with the
Eclipse BPMN Modeler in order to define these relations.
The resulting CVL-enabled BPMN Editor highlights with
colors the referenced fragments. This helps business ana-
lysts to define the CVL Model. The CVL Editor also allows
to define the resolution model by adding to the CVL Model
textual specifications of the context conditions that deter-
mine when adaptations should be carried out.

Astro [4] was chosen as the Context Monitor because it pro-
vides an infrastructure that monitors the BP logic. Con-
cretely, ASTRO reports whether a user changes the pre-
ferred payment method or introduces a new shipping ad-
dress. MoRE-BP makes use of the SPARQL Protocol and
RDF Query Language (SPARQL)4 in order to analyze the
collected contextual information. In order to obtain the ex-
ecutable BPEL code from the adapted base model, MoRE-

2http://www.eclipse.org/projects/project.php?
id=soa.bpmnmodeler
3http://www.omgwiki.org/variability/doku.php
4http://www.w3.org/TR/rdf-sparql-query
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BP makes use of the Babel tool5. Additional details about
the BPMN (i.e., base model) to BPEL (i.e., executable ver-
sion) transformation can be found on our website6. The
adapted BPEL code is hot-deployed in the Apache Orches-
tration Director Engine (Apache ODE)7. Apache ODE was
chosen as the industrial BP engine because it is compliant
with the widely used BPEL standard and it offers mature
hot-deployment support. A demonstration of our prototype
is available8.

6. RELATED WORK
In this section, we describe research works related to BP
variability management. Since our work spans through de-
sign time and runtime, the related work is divided into these
two phases.

6.1 Process Variant Management at Design time
This section describes relevant research works that deal with
BP variability at design time. These works were developed
due to the limitation of DSLs to properly model variability
in BPs. First, PESOA [22] abstracts the BP in an unique
model that includes a set of annotations that identify vari-
able behavior. In [25], the authors define C-EPC, a lan-
guage extension to configure reference BP models that for-
malize recommended practices for specific domains. A single
BP model contains configurable elements, alternatives that
depend on the context of use, and context conditions. In
[14], the authors propose an operational approach, named
Provop, that allows to configure process variants at design
time by adjusting a base model to a given context through
a set of high-level change operations (INSERT, DELETE,
MOVE and MODIFY). The operations that constitute a

5http://www.bpm.scitech.qut.edu.au/research
/projects/oldprojects/babel/tools/
6http://www.pros.upv.es/labs/index.php?
option=com content&task=view&id=14&Itemid=35
7http://ode.apache.org
8http://www.pros.upv.es/images/stories/videos
/demoClaraAyora20120919.avi

process variant are selected after evaluating a given con-
text through a set of context variables. In order to carry
out dynamic adaptations, variants are split via conditional
branches, where the split condition corresponds to the con-
text variable of the option.

Unlike our proposal, PESOA and C-EPC integrate all possi-
ble process variants in a single model resulting in large and
difficult-to-understand models. In addition, they define pro-
cess variants statically, which makes it impossible to adapt
them at runtime after deployment. Thus, if any change is
produced, redeployment of the whole set of process variants
is needed. Although process variants are defined through a
set of change operations in Provop, it forces the deployment
of all process variants using conditional branching. This is
not real adaptability since all alternatives are transformed
into executable versions [3].

6.2 Dynamic Adaptation of Business Processes
Several research works have implemented dynamic adapta-
tions for BPs at the language level. SCENE [9] extends
BPEL with Event Condition Action (ECA) rules that define
consequences for conditions to guide the execution of bind-
ing and rebinding self-reconfiguration operations. VxBPEL
[19] is an adaptation of BPEL that allows adapting a BP
in a service-centric system. In [5], monitoring directives are
expressed in Web Service Constraint Language (WSCoL),
and recovery strategies, which follow the ECA paradigm,
are stated in the Web Service Recovery Language (WSReL).
CEVICHE [16] is a framework that makes use of Complex
Event Processing to implement context-adaptive BPs. By
extending BPEL, CEVICHE allows the user to directly in-
clude into the code the adaptation points and conditions
that are required to create dynamic adaptable BPs.

We argue that the dynamic adaptation of BPs at the lan-
guage level is complex and time consuming, especially in
large systems. On the contrary to these revised works, we
provide a model-based solution that describes these adap-
tations at a more abstract level (i.e., within the resolution
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model), which is more intuitive for non-technical stakehold-
ers.

7. CONCLUSIONS
In this paper, we have described a proposal to manage BP
variability based on the Common Variability Language. First,
we have used CVL to model the possible process variants.
Since CVL is an independent language, no annotations or
variability concepts need to be added to the original DSL
(i.e., Business Process Modeling Notation). Therefore, CVL
improves the quality of the model in terms of legibility, un-
derstandability, and scalability. At runtime, MoRE-BP uses
the CVL specifications to perform dynamic adaptations of
the process variants. Also, we have presented a proof-of-
concept prototype to illustrate our proposal. We learned
that CVL facilitates process variant modeling and guides self
adaptations of BPs in an abstract manner. As future work,
we will provide constraint mechanisms to ensure consistent
resolutions leading to well-formed process variant models.
In addition, we will investigate the adaptation of process
variants in response to unexpected context changes. These
changes may need the definition of new alternatives that
were not considered at design time.
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ABSTRACT
The Cisco Video Conferencing Systems (VCS) Product Line
is composed of many distinct products that can be config-
ured in many different ways. The validation of this product
line is currently performed manually during test plan design
and test executions’ scheduling. For example, the testing of
a specific VCS product leads to the manual selection of a
set of test cases to be executed and scheduled, depending
on the functionalities that are available on the product. In
this paper, we develop an alternative approach where the
variability of the VCS Product Line is captured by a feature
model, while the variability within the set of test cases is cap-
tured by a component family model. Using the well-known
pure::variants tool approach that establishes links between
those two models through restrictions, we can obtain rele-
vant test cases automatically for the testing of a new VCS
product. The novelty in this paper lies in the design of a
large component family model that organizes a complex test
cases structure. We envision a large gain in terms of man-
power when a new product is issued and needs to be tested
before being marketed.

1. INTRODUCTION
Video Conferencing Systems (VCS) play a key role in the
field of communication by offering means to organize high-
quality face-to-face meetings without the need of gathering
physically the participants. Cisco is the worldwide leader of
VCS and sells many distinct products which are used by dif-
ferent clients [1]. VCS can be designed, developed and mar-
keted very quickly and efficiently by means of Product Line
Engineering (PLE), which is a very efficient method to create
a large number of similar products based on a standardized
process [2] [3]. Meanwhile, VCS are usually verified regard-
ing to properties such as robustness and quality-of-service.
Unlike free VCS that are available online, commercial VCS
offer high-quality services for call establishment, communi-
cation control, connexion facilities, hardware systems com-
patibility and so on. To offer these, Cisco VCS products are
thoroughly tested through manual test cases selection and
execution procedures. However, facing the increasing com-
plexity of functionalities and diversity of products, managing

the selection and execution of test cases by hand becomes in-
creasingly time-consuming and error-prone. Designing test
plans and selecting test cases for testing new functionalities
or new products requires increasing efforts [4] [5]. Mean-
while, inaccuracies and misunderstandings in the selection
of relevant test cases are frequent because thorough domain
knowledge and expertise from test engineers is continuously
required.

To address the above-mentioned challenge, we propose to
capture the commonalities and variabilities of both the VC-
S PL and the set of test cases that need to be executed
through PLE techniques [6]. Like the variabilities of the
VCS PL, there are also variabilities of the test cases applied
to the same set of VCS products resulting from the PL. D-
ifferent sets of test cases can be selected to execute different
VCS products and a common structure is used to organize
all test cases in Cisco. Modelling the structure of test cases
in parallel with a clear view of the PL can alleviate the effort
needed to select test cases for a given product [7]. On the
one hand, using Feature Model (FM), which is a well-known
representation of variability [8] [9], a set of distinct VCS
products can be modelled by paying attention to common-
alities and variabilities within the PL. On the other hand,
using Component Family Model (CFM) [10] which is usu-
ally called Family Model, the overall structure of test cases
that are attached to certain functionalities of the products
can be captured. In this paper, we describe ongoing work
that aims at modelling the Cisco VCS PL with these two
models (FM and CFM) and linking these two models in or-
der to support the automatic selection of test cases plans.
This approach allows us to extract automatically the test
cases that are associated with a given VCS product, to se-
lect the test cases for testing a given functionality and more
generally to manage the overall testing strategy of the VCS
PL. The most notable difficulty lies in the design of links
between these models through the usage of restrictions, and
to associate VCS products with test cases [11]. We imple-
ment these models in pure::variants, which is an excellent
tool to capture variability within a PL [10]. The tool comes
with a method to help designers to automatically derive
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configurations of products through features selection. Us-
ing this approach, we associate automatically a set of test
cases with a new VCS product represented by a combina-
tion of features, which makes test cases selection cheaper
and less error-prone. Once a product variant is selected, no
more manual effort is required to identify test cases related
to test a given functionality. We envision a large gain in
terms of man-power savings when a new product is issued
and needs to be tested before marketed since selections of
relevant test cases take too much time and a large number
of man efforts in the Cisco VCS PL.

The remainder of the paper is organized as follows: Sec. 2 re-
views the concept of FM and describes our modelling of the
Cisco VCS PL through FM. Sec. 3 gives a thorough presen-
tation of CFM. Sec. 4 explains how to make the connection
between FM and CFM by using restrictions. Sec. 4 also ex-
plains how to select test cases automatically from a product
variant selection. Finally, Sec. 5 concludes the paper and
describes further work.

2. VIDEO CONFERENCING SYSTEMS
PRODUCT LINE MODELLING

This section presents some background on Feature Model-
s. It also introduces the FM we have built to capture and
manage the variabilities of the Cisco VCS PL.

2.1 VCS Product Line
Product Line Engineering is a convenient way to design and
develop Video Conferencing Systems, as these systems are
highly parametric and can be configured differently for dis-
tinct clients [12]. To mention an example, when designed
for the international market, a VCS product can be config-
ured either in English or in other languages. Considering
that VCS products are sold in more than fifty distinct coun-
tries, this parameter introduces a high degree of variability.
Hopefully, configuration engineers do not need to configure
VCS products for each new requirement and many common
features can be captured efficiently through experience and
documentation [13]. In addition to these configurability is-
sues, there are also intrinsic common and variable features.
For example, considering two distinct VCS products, namely
the ”C60” and ”C90” in the PL, some common features exist
such as supporting the same multisite dual stream function-
ality. However, there are also variable features such as sup-
porting their own max resolution. The goal of PLE in the
case of the VCS PL is to present explicitly what is common
and what differs among the VCS PL. In our work and what
follows, we propose to capture these common and variable
features through the usage of a well-recognized model which
is a Feature Model (FM) [8].

2.2 Feature Model (FM)
Feature modelling is a hierarchical modelling approach for
capturing commonalities and variabilities in PL [14]. It can
be used to document similarities and differences among a
large number of products. Depending on interests of users
or clients, a feature can be a requirement, a technical func-
tion, a configuration option and so on. Thanks to its hier-
archical structure, complete configurations from a PL can
be selected incrementally from a FM through feature selec-
tion [15]. Quoting White et al. [16], ”FM are arranged in

a tree-like structure when each successively deeper level in
the tree corresponds to a more fine-grained configuration op-
tion for the PL variant. Then parent-child and cross-tree
relationships capture the constraints that must be adhered to
when selecting a group of features for a variant”.

FM can be represented as FM = {features, relations, con-
straints}. It contains four different types of relations a-
mong features, namely mandatory, alternative, optional and
or [17]. A mandatory relation between a father feature and
a child feature specifies that, if the father feature is includ-
ed in the current selection, then the child feature must also
be included. An alternative relation among a father feature
and a set of children features is used when the selection of
only one of the children is required, not less, not more. An
optional relation is used when the selection is optional. An
or relation is used when any number of children features
can be selected, but at least one. In addition, FMs can
contain cross-tree constraints which are supplementary rela-
tions among unrelated features. There are two kinds of such
constraints, namely the require and the mutually exclusive
constraints. A require relation among two features (a source
and a target) means that if the sink feature is included into
the current selection, then the targeted feature must also be
included. A mutually exclusive relation among two features
has the opposite meaning, saying that if one is included then
the other one cannot be included as well.

FMs are used in a large number of activities, including do-
main engineering, application engineering, or variability man-
agement [18]. They implicitly contain a great deal of useful
information such as the set of valid products of a PL, the
number of valid products, the number of variation points
within a PL, and so on. In our work, we designed the Cisco
VCS PL using a Feature Model.

2.3 A Feature Model for representing
the VCS Product Line

The Cisco VCS PL is described by documents including syn-
thetic excel sheets, where each line represents a valid product
and each column shows a feature. Fig. 1 shows an excerpt
of such an excel sheet. In the document, we can see that
each product supports similar and different functionalities.
For example, the VCS product ”Asterix” and “C20” both
share video and audio calls, but just ”Asterix” features the
multisite call functionality, while “C20” does not.

Figure 1: VCS PL description
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Figure 2: High level graphical structure of VCS PL

It is now well-accepted that excel sheets are not the best
manner to capture variabilities and commonalities within a
PL, since there is no hierarchical structure among features
within an excel sheet and the matrix representation of the
PL is clearly insufficient when users want to reason about
the overall PL and add new products/features [8].

In our approach, based on the excel document and the com-
mercial descriptions of products(which can be downloaded
from: www.cisco.com), we propose to represent the Cisco
VCS PL with a Feature Model. In ongoing work, we started
with the modelling of eleven distinct VCS products (i.e., As-
terix, C20, MX200 Intrepid, Ex60 Pluto, Ex90 Falcon, C40,
C60, C60-2, C90, C90-2, SX20). Our VCS FM has a hierar-
chical tree structure in which features are represented and
organized as nodes of the tree and relations among features
can be classified as mandatory, or, optional and alternative.
The variants of the VCS PL can be described by perform-
ing different selections on the features of the FM. Fig. 2
shows the highest level of the FM where six essential VC-
S features are represented, namely ”Call”, ”Display”, ”User
Interface”, ”Presentation”, ”Options” and ”Platform”, while
Fig. 3 shows the part of the FM corresponding to the ”Pre-
sentation” feature(Exclamation marks represent ”mandato-
ry” features, question marks show ”optional” features). For
instance, there is a mandatory relation between the ”Call”
feature and the ”SoftWareFeatures” feature because any VC-
S product must contain this functionality. On the contrary,
there is an optional relation between the ”Options” feature
and the ”SoftWareFeatures” feature because a VCS product
may choose to contain some options according to different
individual preferences of requirements. In general, our case

has 69 features in all, which can represent distinct products
by different combinations of features.

Based on the textual description of the PL, we also add
cross-tree relations into the VCS FM. For example, as shown
in Fig. 3, ”require” relations among the ”WXGAp30” feature
under ”DualStreamP2P”, the ”C20” and ”C40” under ”Plat-
form”are added since only the platforms for ”C20”and ”C40”
support resolution up to WXGAp30. These cross-tree rela-
tions are not easy to determine as they require the expertise
of engineers in charge of the design of these products, but
they can be useful to represent VCS products more accurate-
ly in a practical manner. The modelling part of the PL is
thus currently undertaken with the help of Cisco PL expert-
s. Note also that cross-tree relations are a convenient means
to limit and control the number of potential products repre-
sented by the FM. Indeed, the more cross-tree constraints,
the smaller the set of valid products that is represented by
the FM. At this stage, we have built a FM to capture the
variabilities of the Cisco VCS PL. Our goal is now to relate
this FM to the large number of existing test cases that have
been designed in the past to test VCS products.

3. A FAMILY MODEL TO CAPTURE TEST
EXECUTION PLANS

In this section, we briefly introduce Family Models (CFM)
and present our CFM that models the large structured set
of test cases for VCS products.

3.1 VCS Product Line Testing
VCS Testing is currently performed through manual test
cases selection and planning. If a product needs to be test-
ed, engineers have to select relevant test cases based on the
product for getting a test execution plan. However, as stat-
ed in the introduction, manually extracting a large number
of test cases is a tedious and error-prone process [19]. As
a result, some test cases can be erroneously selected lead-
ing to conflicts during test cases execution. These conflicts
have then to be solved manually, entailing a significant waste
of efforts [20]. In Cisco’s structure of test cases, there are
several test suites. A test suite is a collection of test tasks
that belong logically together such as ”Audio”, ”Video” and
”Web” for a better overview. A test task is a collection of
test jobs that has a common test resource requirement such
as ”Image Layouts” and ”Video controller functionality” un-
der ”Video”. Each test job is a test case (a parameterized
test script) which can be run on applicable platforms. It

Figure 3: Graphical structure of the feature ”Presentation”
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Figure 4: High level graphical structure of CFM

is worth noticing that test plans are usually composed of
many test cases and test engineers spend significant time
organizing test cases within these plans. In order to model
the variabilities across numerous test cases and to automat-
ically obtain test execution plans, we propose to capture the
overall structure of test cases with a Family Model.

3.2 Component Family Model (CFM)
CFM can be used to represent how products are assembled
and generated in a PL by modelling relations among soft-
ware architectural elements [21]. It has a hierarchical struc-
ture including items such as components and parts. For the
purpose of automatic product generation from a valid select-
ed feature model in PL, these items can be organized and
used with relevant information about the concrete architec-
ture.

CFM can be represented as CFM = {components, parts,
source elements, restrictions}. Components are named enti-
ties and organized into a tree-like structure that can be of
any depth. Each component represents one or more func-
tional elements of the products in PL such as functions of
software or documentation. Parts are named and typed en-
tities. Each part belongs to a component and contains one
or more source elements. A part can be associated with giv-
en programming language features, classes or objects, but
it can also be associated with other key elements. A source
element is an unnamed but typed entity. Source elements
are usually used to determine how the source code for the
specified element is generated [21]. Restrictions play a key
role for linking FM and CFM. A restriction constrains the
relationships between an element in CFM and features in
FM. They are added into CFM in order to decide whether
an element can be part of a product in PL. An element in
CFM can not be associated with a product unless restric-
tions defined on the element evaluate to true.

3.3 A CFM to capture the structure of test
cases

In our modelling, CFMs are not used to represent software
architecture, but rather to model the hierarchical structure
of test cases. In our CFM, a component represents a test
suite or a test task which can be regarded as a named set
of test cases and it is hierarchically decomposed into fur-
ther components or into part elements. A part represents
a test case which belongs to a test task. Fig. 4 represents
the highest level of the CFM where each component is repre-
sented by its name, while Fig. 5 represents the subtree of the

Figure 5: Graphical structure of ”Video”

”Video”component. These names have usually been selected
according to the functionality of the VCS to be tested.

Physical elements such as test scripts that contain several
test cases within test execution plans could also be mod-
elled through source elements in CFM. However, in our on-
going work, we focus on the association of the VCS PL and
the test cases. Hence, our CFM contains only components
and parts which can be linked with FM, but no source ele-
ments, meaning that the automatic selection of test cases is
currently possible, but not automatic execution of obtained
test plans. Another important characteristic of CFM is the
notion of restrictions. A typical restriction over a CFM is
hasfeature() stating that a component or a part is part of the
resulting selection iff the relevant feature is included in the
set of features selection. Besides the hasfeature() restriction,
some more complex restrictions can also be defined using the
Prolog programming language for the purpose of linking FM
and CFM more accurately in a practical manner. Thus more
complex links between these two models can be made to per-
form the selection process of test cases in a more systematic
way. In our approach, we use the hasfeature() restriction
to associate features with test cases, meaning that each test
case is linked with the corresponding features of the FM of
the VCS PL. Using restrictions allows us to establish links
between the test cases structure and the VCS PL. Now we
detail the implementation of our overall approach.
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4. IMPLEMENTATION
In this section, we suppose that both a FM for the Cisco VCS
PL and a CFM for representing the test cases structure have
been built. We propose to establish links between these two
models and present an example of automatic selection of test
cases.

Our approach is implemented within pure::variants, a soft-
ware modelling tool that allows users to design FM, CFM
and restrictions [21]. In pure::variants, an important advan-
tage that makes CFM powerful is its support of flexible rules
for the inclusion of components as well as parts, meaning we
can use various rules to determine whether a component or
a part can be included into a product. This is achieved by
placing various restrictions on these elements. Each element
can have any number of restrictions. A component or part
is contained in the resulting configuration iff its parent is
included and its restrictions evaluate to true or there are no
restrictions on it [21]. Therefore, based on these rules, we
can link our FM of the VCS PL and CFM of the structuring
test cases.

In our approach, hasfeature() is used to link the VCS FM
and the CFM of test cases. For example, we assign the
restriction hasfeature (’Dual StreamMultiSite’) to the part
”MBT multisite - h323” under the component ”Multisite p-
resentation” because the test case ”MBT multisite - h323”
is related with test functionality ”Dual StreamMultiSite”.
It means that during the automatic selection of test cases,
the test case ”MBT multisite - h323” can be included into
the test cases plan iff the feature ”Dual StreamMultiSite”
is in the selection set of features. According to thorough
discussions with Cisco test engineers, we added many rel-
evant restrictions into our family model. For example, we
added the restriction hasfeature(’Dual StreamMultiSite’) to
each part under the ”Multisite presentation” component.

Based on our FM and CFM models built in pure::variants,
relevant test cases can be selected automatically when a new
product needs to be tested. The configuration process is
shown in Fig. 6. Test engineers just need to choose the set
of features they want to test on the FM, then, after the se-
lection of relevant features, test cases can also be obtained
automatically. The selection description of features and cor-
responding test cases can be exported in XML and HTML
file formats. These description documents can then be mod-
ified or improved in order to be used in the process of test
execution. However, in our current work, we do not yet
exploit these exported files to configure the test execution
process.

Figure 6: Process of automatic selection and test execution

4.1 A configuration scenario
We now describe a scenario where a new VCS product comes
into play, and needs to be tested. Firstly, test engineers need
to select the set of features corresponding to the new prod-
uct in the FM, as shown in Fig. 7 (a). Using pure::variants
is advantageous in this process as selection conflicts, such as
those due to mutual and require cross-tree constraints, are
automatically detected and resolved. For example, as shown
in Fig. 7 (a), if the feature ”Multisite Call” under the feature
”Type” of ”Call” is selected, then the features ”P2P Call” is
automatically tagged as impossible to select. Similarly, the
selection of ”Multisite Call” leads to the automatic selection
of the feature ”MultisitecallOption” under the feature ”Op-
tions” because there is a ”require” relation between them.

(a) Features selection of a
VCS product

(b) Automatic test cases selection

(c) Test cases related with mul-
tisite presentation are removed

Figure 7: A configuration scenario

Automatic feature selection leads to the automatic selection
of test cases, as shown in Fig. 7 (b). Because the feature
”Dual StreamMultisite” is included in the selection, test cas-
es related to multisite presentation are also included in the
test case selection. However, if the feature ”Dual Stream-
Multisite” is removed from the selected set of features, test

34



cases relevant to multisite presentation are then removed,
as shown in Fig. 7 (c). Therefore, automatic selection of
test cases can be achieved using the FM and CFM we de-
signed for the Cisco VCS PL. When a VCS product needs
to be tested, corresponding test cases can be automatically
selected by selecting relevant sets of features on the FM.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we propose an alternative approach to com-
plete the process of automatic selection of test cases to test
the products of a product line by using Feature Models (FM)
and Family Models (CFM). FM captures the variabilities of
the PL and CFM manages the variability within the test
cases structure. Using restrictions, a simple feature selec-
tion over the FM leads to the automatic selection of test
cases for a given product. We are applying this approach to
the modelling and testing of a complete Video Conferencing
System Product Line. The paper presents the first steps of
this ongoing work. Using this approach, we envision a large
gain in terms of effort savings, as automatic selection and
configuration of test cases is possible and allows us to avoid
this costly and error-prone process.

However, some open research questions still need to be ad-
dressed in order to show that the approach is fully viable:

1. How to evaluate the benefits of this automatic test
cases selection process? We believe that the approach
presented in this paper is particularly useful to obtain
test cases when new products are issued as it should
save significant efforts by avoiding the costly process of
manual test case selection. To evaluate precisely these
benefits, a thorough experimental study is required;

2. How to capture the test cases structure through an im-
proved CFM? In our modelling, we use only the has-
feature() restriction, that might not be sufficient for
automatic selection of test cases plans. Other restric-
tions could be advantageously exploited and logical
combined in order to link FM and CFM more accu-
rately and reasonably. We should also mention that
using attributes of FM and CFM could be interesting
to parameterize the testing process, by considering ex-
plicit links with test scripts and parameters because
a test script with different parameters can represent
different test cases in VCS product line;

3. How to utilize a configuration tool within a well soft-
ware validation process? Utilizing a standard tool like
pure::variants within a software validation process is
still questionable as the methodology for using our ap-
proach within a complete process is still an ongoing
work. To start, we envision to exploit the results of
our approach within a test configuration tool that is
used at Cisco to drive the test execution process. A
related question concerns the integration of this im-
proved configuration tool into the process that is used
for the testing of the VCS PL.
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Jornadas de Ingenieréa del Software y Bases de Datos
(JISBD), pages 367–376, 2006.

[16] J. White; D. Benavides; D. C. Schmidt; P. Trinidad; B.
Dougherty; A. Ruiz-Cortés. Automated diagnosis of feature
model configurations. Joural of Systems and Software,
83(7):1094–1107, 2010.

[17] K. Czarnecki; C. Kim; K. Kalleberg. Feature models are
views on ontologies. In proceedings of the 10th
International Software Product Line Conference (SPLC),
pages 41–51, August 2006.

[18] D. Beuche; H. Papajewski; W. Schröder-Preikschat.
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